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Highlights
NeuroDetour : A Neural Pathway Transformer for Uncovering
Structural-Functional Coupling Mechanisms in Human Connec-
tome

Ziquan Wei, Tingting Dan, Jiaqi Ding, Paul J. Laurienti, Guorong Wu

• A novel multivariate SC-FC coupling allows us to develop an explainable
deep model based on neural detour.

• A Transformer model that can learn path in human connectome without
preprocessing.

• Validate NeuroDetour on large-scale public datasets with a total of
10,886 fMRI scans.
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Abstract

Although modern imaging methods enable in-vivo examination of connections
between distinct brain areas, we still lack a comprehensive understanding
of how anatomical structure underpins brain function and how spontaneous
fluctuations in neural activity give rise to cognition. At the same time, many
efforts in machine learning have focused on modeling the complex, nonlinear
relationships between neuroimaging signals and observable traits. Yet, current
machine learning techniques often overlook fundamental neuroscience insights,
making it difficult to interpret transient neural dynamics in terms of cognitive
behavior. To bridge this gap, we turn our attention to the interplay between
structural connectivity (SC) and functional connectivity (FC), reframing this
open question in network neuroscience as a graph representation learning
task centered on neural pathways. In particular, we introduce the notion of
a “topological detour” to describe how a given instance of FC (i.e., a direct
functional connection) is physically supported by underlying SC pathways
(the detour), forming a feedback loop between brain structure and function.
By considering these multi-hop detour routes that mediate SC-FC coupling,
we design a novel multi-head self-attention mechanism within a Transformer
architecture. Building on these ideas, we present a biologically inspired
deep-learning framework, NeuroDetour , that extracts connectomic feature
representations from large-scale neuroimaging datasets and can be applied
to downstream tasks such as task classification and disease prediction. We
validated NeuroDetour on extensive public cohorts, including the Human
Connectome Project (HCP) and UK Biobank (UKB), using both supervised
learning and zero-shot settings. In all scenarios, NeuroDetour achieves state-



of-the-art results.
Keywords: Functional MRI, Network Neuroscience, Structure-function
Coupling, Deep Learning, Graph Transformer, Neural Circuits

1. Introduction

The human brain, comprised of intricate networks of white matter fibers,
forms a complex system [1]. Along with these structural connections are
neuronal oscillations, which orchestrate functional variations across widespread
neural circuits, crucial for various cognitive functions essential to daily life [2].
As neuroimaging techniques become increasingly prevalent in neuroscience
research, striking efforts have been made to understand the role of structural
connectivity (SC) and functional connectivity (FC) from a holistic perspective,
recognizing that the dynamic nature of the human brain drives spontaneous
functional fluctuations [3]. SC is a static graph and physically wired by
neuronal fibers extracted from Diffusion Weighted Imaging (DWI), and FC
from functional Magnetic Resonance Imaging (fMRI) of the brain is a dynamic
graph representing the correlation between regional Blood-Oxygen-Level-
Dependent (BOLD) signals [1].

Multiple neuroscience studies indicate that high-level cognition and behav-
ior emerge from a close coupling between structural and functional neuroimag-
ing. Consequently, understanding how SC and FC interplay has become
a crucial step toward reverse engineering the human mind from the brain
connectome [5]. Over the past decade, researchers have proposed various
computational models to characterize this relationship, including graph har-
monic approaches [6, 7], network communication frameworks [8], multivariate
statistical methods [9], and deep learning techniques for structure-function
mapping [10, 11, 12, 13, 14]. Despite these advances, the precise link between
SC and FC remains elusive [15]. In particular, many pairs of regions that
show strong functional connectivity (FC, green box in Fig. 1) lack a direct
structural pathway (orange box in Fig. 1) [16, 17, 18]. Although SC and FC
topologies do not always align, there is a growing consensus that each FC
connection is in fact supported by a subgraph of SC. In other words, when two
regions exhibit a functional link (red link in Fig. 1), the SC network contains
an indirect path (blue links in the orange box) that physically underlies that
FC. Therefore, developing high-order topological representation is essential
for decoding the SC-FC coupling mechanism in the human brain.
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Figure 1: Embedding a novel multivariate SC–FC coupling mechanism into an interpretable
deep model. Orange box: Structural connectivity (SC), illustrated by gray edges, reflects the
anatomical strength of white-matter fibers linking two brain regions. Because anatomical
wiring changes slowly, SC can be treated as a relatively static substrate. Green box:
Functional connectivity (FC), in contrast, captures the dynamic coordination of neural
activity and is often regarded as the brain’s time-varying network topology [4]. Overlap
(Orange × Green): Our multivariate SC–FC coupling mechanism. Instead of assuming
a one-to-one correspondence between SC and FC, we model each functional connection
as being supported by multiple interacting structural pathways (i.e., detour) that jointly
facilitate information flow even when the direct SC between two regions is weak/absent.
The comparison between inter-subject (purple box) and inter-cognitive state (blue box)
variations of FC and detour adjacency (see Sec. 3) matrices.

Previous work has explored how to derive meaningful representations for
subgraph topology, enabling a range of downstream applications. In knowledge
graphs, such representations have supported reasoning-path discovery [19]
and cycle-basis extraction [20]. In molecular modeling, subgraph encoding has
been advanced through neural fingerprints [21], junction-tree autoencoders
[22], and cellular Weisfeiler–Leman (WL) tests [23], each capturing distinct
aspects of local structural organization. Especially, graph data in the realm
of neuroscience research provides additional insight that underlines particular
neurobiological mechanisms of interest, such as substructure [24, 25] and
snapshot embeddings [26, 27] in SC. Nevertheless, learning the representation
of physical neural pathways by combining SC and FC is not yet considered.
Despite reviews [28, 29] of Graph Neural Networks (GNN) for neuroimaging
showing various methods for SC-FC mapping, the downstream application
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has not been extended to disease diagnosis or cognition recognition.
On the other hand, it is not straightforward to apply a generic method that

learns paths in a graph to our topic. Although network path is an important
substructure, unfortunately, finding all paths is an NP-hard (Nondeterministic
Polynomial time-hard) problem. Recently, Path Neural Networks (PathNN)
[30] first proposed to learn the representation of every existing simple path
with limited length using a Multi-Layer Perceptron (MLP), and [31] brings
the same idea to the WL algorithm, demonstrating the theoretical power
of PathNN-like models distinguishing topology. Although they achieved
state-of-the-art (SOTA) performance on chemical and molecule datasets to
distinguish graphs of small size, the need for a larger graph, like a brain
network, cannot be fulfilled. To address the computational costs, existing
works extract structural representatives from all paths, e.g., the shortest
path distance encoded in various graph transformers and message-passing
neural networks [32, 33, 34, 35, 36]. There is still a preprocessing step that
cannot be skipped. The gateway to applying the above methods to the
human connectome is the dense connectivity resulting in unavoidable verbose
preprocessing as listed in Table 1, where H denotes the limited length of the
path. Even though the superior performance demonstrated in previous studies
cannot be directly applied to network neuroscience due to seconds or minutes
of preprocessing per graph, while our NeuroDetour is designed to model paths
without calculating or processing any type of distance, path, or handcrafted
topological transformations beyond the standard SC/FC matrices produced
by fMRIPrep [37] and QSIPrep [38].

Table 1: Preprocessing by GNNs for network paths of the SC network (Nnode = 116)
extracted from a single UKB subject.

Type Time

PathNN [30] All simple paths 5.23s (H = 4), 650s (H = 5)
Graphormer [34] Shortest distance 270ms (H = 7)
NeuroDetour None -

To overcome the above challenges and advance our understanding of SC-FC
coupling, we move beyond the traditional notion of univariate coupling, which
focuses solely on the one-to-one correspondence between a direct structural
link and a direct functional link, and introduce a multivariate framework.
In this new paradigm, each observed FC connection is associated not just
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with its immediate SC counterpart, but with an entire “detour” pathway
through the SC network. For example, in the green box of Fig. 1, the red
line marks a direct functional link between regions #1 and #2, while the
series of blue lines traces the indirect structural route that supports that
functional interaction. Although the overall SC topology remains fixed, the
FC patterns can arise from different multi-hop SC pathways over time and
only the shortest pathway and SC absence have been studied in the previous
works [16, 39]. Importantly, the direct FC link and its SC detour together form
a cyclic loop that reflects both structural and functional organization [40, 41].
This perspective of indirect SC, derived from neuroscience studies, shows
that synchronized activity between two regions depends on the underlying
structural circuitry, rather than on a single, direct fiber bundle.

From the perspective of machine learning, the primary objective is to learn
a mapping from SC-FC to cognitive and clinical outcomes. We propose a novel
deep model, coined NeuroDetour , to (1) enhance predictive performance in
cognitive status classification by incorporating both SC and FC information,
and (2) elucidate the underlying SC-FC coupling mechanism. To achieve the
goals, we posit that a comprehensive understanding of cognitive neuroscience
necessitates explicit modeling of how functional fluctuations are supported by
structural pathways. Concretely, NeuroDetour exposes the SC-FC relationship
by linking each observed FC to its candidates of SC detour and then a weighted-
sum detour representation for phenotypic prediction. This design leads to
a combined feature representation of all multi-hop detours (Sec. 3.1) and
an association between the detour representation and cognitive (Sec. 2) or
clinical outcomes (Sec. 4.7). To embed this conceptual framework within
an end-to-end deep architecture, we focus on designing a new multi-head
self-attention (MHSA) module that is explicitly informed by our multivariate
SC–FC coupling paradigm. Within each attention layer, NeuroDetour learns
multiple “detour” paths in the SC graph that are associated with individual
FC links. Instead of learns from FC with smoothed inter-subject variation, as
shown in Fig. 1 purple box, each attention head processes one of the detour
paths with a more sparse inter-subject difference. Thereby, NeuroDetour
enables learning how the neural pathway (aka. SC detour) of varying lengths
jointly underpin functional interactions under less noisy subject-wise bias (see
Fig. 1 blue box). Following the methodology presentation in the conference
version [42], we applied it to the experiments (1) testing the associations
between detour pathways and brain disordering and aging among two datasets,
and (2) twelve challenging cognitive tests among UKB phenotypic fields.
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Multiple significant differences regarding detour length and passing-by brain
regions of our new findings further enhance our work. In summary, our
contribution is threefold.

1. Multivariate SC-FC coupling framework. We extend the con-
ventional univariate concept of structure-function correspondence to a
multivariate formulation in which each functional link is supported by
a subgraph of SC. This approach is grounded in both neuroscientific
evidence and graph theoretic principles, thus yielding an interpretable
model architecture.

2. Transformer-based path representation learning. By embedding
the SC-FC coupling mechanism within a Transformer, NeuroDetour is
capable of learning path level representations directly from connectome
graphs, obviating the need for handcrafted preprocessing, and scaling
effectively to large neuroimaging cohorts.

3. Large-scale validation across public datasets. We evaluate Neu-
roDetour on a total of 10,886 fMRI sessions drawn from the Human
Connectome Project (HCP), UK Biobank (UKB), Alzheimer’s Disease
Neuroimaging Initiative (ADNI), and Open Access Series of Imaging
Studies (OASIS). Experimental results demonstrate (i) superior accu-
racy in predicting healthy cognitive states, disease risk of Alzheimer’s
and ICD10, and cognitive tests prediction; (ii) enhanced interpretability,
as evidenced by the identification of latent neural pathways from SC-FC
coupling associated with disordering and aging; and (iii) clinical utility
through robust performance and successful zero-shot learning across
distinct datasets.

2. Inter-subject Variability in Human Connectome Project

Inter-subject variability in functional connectivity (FC) frequently ob-
scures task-specific activation patterns. FC patterns naturally differ across
individuals due to factors such as aging, vascular differences, and baseline
neural dynamics, causing FC degree to fluctuate widely even within the same
cognitive condition. As a result, the variability across subjects can be as large
as, or larger than, the task-evoked modulation itself, making it difficult to
isolate changes driven by the cognitive status rather than by undesired indi-
vidual differences. Even in the Human Connectome Project Aging (HCPA)
cohort, where image acquisition is standardized to minimize heterogeneity,
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Figure 2: Top: Brain regions showing significant differences between resting-state and
VISMOTOR task state are identified using both detour degree and FC degree. The color
scale indicates the corresponding p-values (0 ≤ p ≤ 0.05) from a paired t-test. Bottom:
The bar plot displays the overlap ratio (y-axis) between the number of significant regions
identified and the total number of regions within each predefined subnetwork (x-axis)
among the Gordon333 atlas. The default mode (red circle/box), visual (orange circle/box),
and sensorimotor (green circle/box) networks are highlighted due to their well-established
involvement in differentiating resting-state and VISMOTOR.

this challenge remains evident. To illustrate, Fig. 2 highlights regions that
differ significantly between resting-state and VISMOTOR task conditions, as
assessed by both detour degree and FC degree. Here, “detour degree” for a
node is defined as the number of distinct topological detour pathways (with a
maximum radius 6) that end at that node. Such pathways in a SC graph are
identified using a depth-first search algorithm1 between each pair of nodes
that are connected by an FC edge.

Specifically, we calculated detour degree for each of the Gordon333 parcel-
lation regions in both resting and VISMOTOR states, across all 716 HCPA
subjects. For each parcel, we then constructed two paired samples, one from
the resting state and one from the task state, by aligning detour degree values
from the same subject under different states. A paired t-test was then applied
to these paired detour degree vectors to identify parcels with significant task-

1We used the NetworkX implementation, networkx.all_simple_paths
(https://networkx.org/documentation/stable/reference/algorithms/generated/
networkx.algorithms.simple_paths.all_simple_paths.html), where input graph is
the SC, source and target nodes are every node pair that has an FC connection.
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related changes (threshold: p < 0.05). In parallel, we calculated FC degree for
each parcel. They were similarly subjected to a paired t-test between resting
and task conditions, with the same significance threshold. To quantify the
significance level in functional subnets, we proposed an overlap ratio within
each predefined subnetwork of the Gordon333 atlas. For each subnetwork
i, the overlap ratio is defined as Nsigni

/Nneti , where Nsigni
is the number of

parcels of i-th community have p ≤ 0.05 and Nneti is the total number of
parcels in i-th subnetwork. This overlap ratio quantifies the extent to which
each functional subnetwork is implicated in task-related reorganization, as
detected by detour and FC degree metrics.

In Fig. 2, significant parcels are overlaid on cortical surfaces and colored
according to their p-values. Each of these parcels is then assigned to one of
12 functional subnetworks, which are predefined by the Gordon333 atlas. The
overlap ratios are displayed as bar plots beneath the cortical renders (x-axis:
subnetwork identity; y-axis: overlap ratio). Previous studies indicate that
resting-state activity primarily involves the default mode network [43] (high-
lighted by the red circle), whereas the VISMOTOR task engages both visual
(orange circle) and sensorimotor [44] (green circle) regions. In this context,
detour degree demonstrates superior discrimination relative to FC degree:
most significant parcels identified by detour degree align with the expected
subnetworks (default mode, visual, and sensorimotor), while producing fewer
false positives in unrelated subnetworks.

Aside from the t-test on the entire HCPA dataset, t-tests on diverse
populations by gender are shown in Fig. 2, indicating the observation in
the entire population is not biased by diversity in terms of inter-subject
variation. Specifically, both groups show statistical significance solely on
brain sub-networks related to functions instead of every region by FC degree.
Note that the female group shows the most similar overlap ratio to the entire
dataset because its sample size (n = 404) is closest to the total sample size
(n = 716), reducing sampling variability relative to the male and youngest
groups..

The results in Fig. 2 highlight the critical role of SC detours in identifying
putative functional biomarkers, motivating us to embed the SC–FC coupling
mechanism directly into the design of NeuroDetour .
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3. Methods

Our goal is to couple neuroscience insight with deep learning capacity by
explicitly encoding topological detours, multi-hop SC pathways that support
functional interactions, within a graph-transformer framework.

Notations. Suppose SC and FC are denoted by adjacency matrices AS ∈
RN×N and AF ∈ RN×N , respectively, where A

(·)
ij is the connectivity between

ith and jth region (i, j = 1, ..., N). In practice, SC and FC are calculated by
subject-wise normalized white matter (WM) fiber counts and the Pearson
correlation coefficient of hemodynamic signals, respectively. Furthermore,
we use Â(·) to denote the binary adjacency matrix after high-pass filtering
and adding self-loop for either SC or FC. The high-pass filter removes edges
with weights below a fixed threshold. Specifically, for FC we retained only
correlations with absolute value ≥0.5, and for SC we retained streamline-
normalized weights ≥0.1. This thresholding procedure removes weak or noisy
edges and functions as a high-pass filter on the weighted graph. Node attribute
is denoted by X ∈ RN×C , where C is the feature dimension.

To capture multi-scale topological structure, we perform random walks on
the SC graph, generating a sequence of multi-hop detour adjacency matrices
as follows:

Definition 3.1 (Detour adjacency matrix). Dh, a binary matrix of shape
N×N and stores whether a link of FC is associated with an h-hop topological
detour, where a 1-hop detour is equivalent to an edge. It is obtained by
element-wise production between binary matrices Dh :=

(
(ÂS)h > 0

)
·
(
ÂF

)
,

where 1 ≤ h ≤ H, and H is the maximum length of detour.

Note that Dh avoids finding all simple paths by our model, it signifi-
cantly reduces computational costs with sufficient modeling power for neural
pathways as discussed in Sec. 3.1.

NeuroDetour adopts a twin-branch architecture as a proof-of-concept
design [42]. Each branch implements an identical MHSA) module based
on the Transformer encoder [45]. The twin-branch setup enables aligned
feature representations, allowing the model to jointly encode SC-derived
detour information and FC link patterns.

Given a set of learnable parameters W̄,Ŵ ∈ R(HC)×C and ᾱh, β̄h, γ̄h, α̂h, β̂h, γ̂h ∈
RC×C where h = 1, . . . , H, H is head number of MHSA, and C denotes feature
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dimension, the branch TD-MHSA is then defined as

fTD(X) = Concat
(
X̄1, . . . , X̄H

)
W̄,

X̄h = Softmax
(
(Xᾱh)(Xβ̄h)

T + fmask(D
h)
)
(Xγ̄h) .

(1)

Similarly, the FC-MHSA branch is defined as

fFC(X) = Concat
(
X̂1, . . . , X̂H

)
Ŵ,

X̂h = Softmax
(
(Xα̂h)(Xβ̂h)

T + fmask(Â
F)
)
(Xγ̂h) .

(2)

Applying masks to attention maps offers a principled way to restrict self-
attention to the nodes of interest. To implement this, we definefmask as an
operation that assigns negative infinity to the false entries and zero to the
true entries of a binary adjacency matrix. This ensures that the Softmax
function effectively ignores the masked (false) positions in both branches.

The training loss integrates the downstream task objective and a consis-
tency term LTD, defined as

LTD = ||fTD(X)− fFC(X)||2. (3)

Taking classification as an example, the final loss L = CELoss (label,Y)+LTD,
where the logits Y = ρ− 1

2 ÂFρ− 1
2fTD(X)Θ with learnable parameters Θ ∈

RC×n, n is class number and ρ is degree of brain network adjacency ÂF. This
consistency constraint is designed to follow the SC-FC coupling insight of
neuroscience by restricting the difference of representations from FC and
TD branches so that the mapping between NeuroDetour representations and
functional states of the human connectome is not a one-to-many scheme as
mentioned in Section 1.

3.1. Path Representation
TD-MHSA strictly follows the pathway of topological detour after SC-FC

coupling to produce node features hop-by-hop corresponding to each head of
self-attention. Then, the following fact can be announced after expanding Eq.
1.

Fact 3.1. The top-1 path is obtained by pathway weights argmaxj,h

(
1
h

∑
j∈p Sijγ̄hW̄i∼j

)
,

where S denotes the value of softmax self-attention, p ⊂ PH
i is a set of node

index of a path and PH
i is the node collection of neural pathways within H-hop

starting at i-th node.
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In plain words, we seek the top-ranked neural pathways by sorting weights
for all filtered node indexes in TD-MHSA of NeuroDetour . The proof of the
above Fact can be found in the Appendix. Taken together, NeuroDetour
aggregates the representation of simple paths to recognize a brain graph with
O(N2) computational complexity while being free of any pre-processing as
listed in Table 1.

4. Results

We test NeuroDetour with three evaluations: (1) Clinical utility for
Alzheimer’s disease and International Classification of Diseases (ICD) classi-
fication, (2) cognitive state classification, and (3) cognitive tests prediction.
Note that the second task serves as a fundamental benchmark for evaluating
whether a model can capture meaningful functional reconfiguration of the
brain. Task-evoked neural activity produces robust, well-characterized changes
in functional connectivity compared to resting-state. Therefore, successful
classification of task-related versus resting-state indicates that the model is
sensitive to state-dependent FC patterns and can detect network-level shifts
driven by cognitive engagement. This provides a controlled setting in which
to assess the model’s ability to leverage SC–FC coupling before applying it
to more heterogeneous and clinically complex datasets such as ADNI and
OASIS.

4.1. Datasets
Four public datasets are used in our experiments as listed in Table 2 with

the profile of the functional connectivity (FC). The static data refers to FC
being extracted from the entire session of fMRI. Dynamic data is split from
the full scan of fMRI into 100-length slices, causing more graphs and different
connectivity.

Table 2: Data profiles, where |G| denotes the number of graphs, |C| denotes the number of
classes, and avg(D) denotes the average degree of brain networks.

HCPA UKB ADNI OASIS
static dynamic static dynamic static dynamic static dynamic

|G| 4,863 18,306 5,890 22,600 138 294 402 1,678
|C| 4 4 2 2 2 2 2 2
avg(D) 6.53 13.52 12.85 36.07 44.44 43.89 56.47 59.36
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The Lifespan Human Connectome Project Aging (HCPA) dataset [46]
offers a rich resource for investigating task-related brain activity across the
adult lifespan. It comprises 717 participants, with 4,863 fMRI sessions and
716 DWI scans. Imaging includes three task paradigms targeting memory and
sensorimotor processes—VISMOTOR, CARIT, and FACENAME, as well as
resting-state acquisitions. In our framework, these four states are treated as a
four-class classification and (for zero-shot learning) as a binary classification
between resting and task states. For most experiments, brain regions are
parcellated using the AAL atlas [47], while the Gordon atlas [48] is reserved
for ablation analyses.

The United Kingdom Biobank (UKB) dataset provides a large-scale collec-
tion of MRI data, processed through the same pipeline applied to HCPA. It
contains 5,483 fMRI and 3,162 DWI scans, all of which include a single task
engaging both cognitive and sensorimotor domains [49, 50]. In our studies,
we formulate this as a two-class classification and use the Gordon atlas [48]
for parcellation.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset [51]
offers preprocessed imaging from 138 fMRI and 135 DWI sessions, with AAL
parcellation applied. Participants carry clinical labels across five categories:
cognitively normal (CN), subjective memory complaints (SMC), early-stage
mild cognitive impairment (EMCI), late-stage mild cognitive impairment
(LMCI), and Alzheimer’s disease (AD). To mitigate class imbalance, we merge
CN, SMC, and EMCI into a single “CN” category, while LMCI and AD are
grouped as the “AD” category, enabling a binary classification setup. Noted
that although this subject dichotomization is intended to facilitate a binary
classification framework for our analysis, it may introduce confounds, including
increased heterogeneity within combined classes and obscured transitional
patterns (e.g., EMCI→LMCI). Since the merged groups span multiple disease
stages with differing degrees of pathology, atrophy, and connectivity disruption
[52, 53], there is a potential for reducing class separability in both SC and
FC features [54]. Nonetheless, binary grouping makes our cross-dataset
application between different datasets available while mitigating severe class
imbalance.

The Open Access Series of Imaging Studies (OASIS) dataset [55] encom-
passes data from 924 individuals, totaling 3,322 fMRI sessions. For our
analysis, we select 402 fMRI and 362 DWI scans that have been processed
with the Destrieux parcellation [56]. We conduct a binary classification task
by assigning subjects in preclinical or dementia-related stages to the “AD”
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group, and those who remain cognitively unimpaired to the “CN” group.
All datasets are split using 5-fold cross-validation based on subject indices

to prevent data leakage across training and validation sets. For all experiments,
FC is computed using the Pearson correlation coefficient with a threshold
of 0.5 by default, while SC is derived from normalized white-matter fiber
counts, thresholded at 0.1. In constructing brain networks, node attributes
can be defined using either the raw Blood-Oxygen-Level-Dependent (BOLD)
signals (in RN×T ) or the pairwise correlation (CORR) between BOLD signals
(in RN×N). Prior work has shown that the effectiveness of these choices
varies across datasets [4]. Additionally, the temporal resolution of the BOLD
signal, whether full-length (static network) or short-length segments (T = 100,
dynamic network), also significantly influences deep model performance [4].
To ensure a comprehensive evaluation of NeuroDetour across diverse brain
network representations, we test all four combinations of node features (BOLD
vs. CORR) and temporal settings (static vs. dynamic) in our experiments.

4.2. Baseline Setting
For comparison, we evaluate NeuroDetour against a range of competitive

methods, including two baseline models (MLP and GCN), three state-of-
the-art brain network models (BrainGNN [24], BNT [25], and BolT [27]),
and two state-of-the-art generic graph transformers (Graphormer [34] and
NAGphormer [33]). The MLP and GCN baselines each consist of a single
vanilla layer followed by batch normalization and an activation function for
feature extraction, and one graph convolution layer for prediction. All training
and validation configurations, including random seeds, learning rates, and
other hyperparameters, are kept identical across methods. Codes can be
acquired via this GitHub repository2.

4.3. Performance of Neural Activity Classification
Performance on datasets HCPA and UKB is illustrated in Figure 3 first row.

Except for UKB BOLD dynamic, our NeuroDetour is ranked in the top two
places under all data settings in terms of accuracy and the weighted F1 score.
Our NeuroDetour achieves the highest neural activity classification accuracy
across all UKB settings at 99.59%. In comparison, the best performance by
other models is 99.31%, achieved by the GCN. In the HCP-A dataset, SOTA

2https://github.com/Chrisa142857/neuro_detour
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Figure 3: Performance comparison on four datasets. Experimental settings are abbrevated
as S, D, C, and B denoting Static, Dynamic, CORR, and BOLD, respectively. ∗∗ and ∗
indicates p ≤ 10−3 and 10−3 < p ≤ 0.05, respectively.

brain models use more than twice the number of parameters compared to our
model. Nonetheless, our NeuroDetour secures at least the second place across
all data settings in HCP-A, largely due to the explicit formulation of physical
neural pathways in model design. In contrast, generic graph transformers,
lacking neuroscience knowledge, perform even worse than vanilla MLP and
GCN models.

4.4. Performance on Disease Diagnosis
Fig. 3 second row shows AD vs CN classification in the ADNI and OASIS

cohorts under four distinct data modalities (static BOLD, static FC, dynamic
BOLD, and dynamic FC). Across these eight experiments, NeuroDetour
consistently ranks among the top three methods, with the sole exception
of the F1 score on dynamic OASIS BOLD data (D-B-F1 in Fig. 3). In
particular, the incorporation of our multivariate SC-FC coupling mechanism
enables NeuroDetour to attain the highest classification accuracy in five out
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of eight cases and the highest F1 score in three out of eight cases. Notably,
NeuroDetour is the only model to exceed 90% accuracy in any of these
experiments. Although class imbalance within ADNI and OASIS leads to F1
scores that are lower than their corresponding accuracy values, NeuroDetour
still achieves the best F1 performance across both datasets, with scores of
83.29% (ADNI) and 87.02% (OASIS) under all data settings. As expected,
performance declines slightly on dynamic graphs, where the increased number
of neural pathways yields a higher graph degree, yet NeuroDetour remains
competitive with, or superior to, existing SOTA approaches. In summary,
NeuroDetour demonstrates clear advantages over alternative methods when
applied to static graph representations, a benefit that we attribute directly
to its principled modeling of multivariate SC-FC coupling.

4.5. Performance on Cognitive Tests and ICD
To further evaluate, we demonstrate 12 more difficult tasks of UKB

cognitive tests and ICD10 labels3. Note that the evaluation is measured by
Mean Squared Error (MSE), Pearson correlation (r) and Accuracy (Acc), F1
score for continuous and discrete value, respectively. [Min, max] denotes the
value range, and the number denotes the number of classes in the last column
in the table below. ICD10 is the medical history of a subject and therefore is
a multiclass classification. We simply convert ICD10 evaluation into binary
classification on multiple selected codes and chapters with sufficient positive
samples (>10%). Area Under the receiver operating characteristic Curve
(AUC) is used to measure ICD10 with an 80%:20% train:test setting, and
others are all 5-fold cross-validation. Table 4 shows results. Across
a broad suite of cognitive, behavioral, and health-related prediction tasks,
NeuroDetour consistently outperforms all competing baselines, often by very
large margins. Traditional models (MLP, GCN, BrainGNN) and SOTA
brain/graph models (BolT, BNT, Graphormer, NAGphormer) show highly
unstable or near-chance performance across many tasks, with several models
producing negative or near-zero feature importances or negligible predictive
power. In contrast, NeuroDetour delivers substantially higher and far more
stable scores across nearly every task, including FI, Trail, Puzzle, Tgame,
Sleep, ICD-Ch, and ICD-top, where it significantly surpasses all baselines

3Fill the Field_ID of this url from Table 3:
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id={Field_ID}, to access the detailed
description of tests and labels

15



Table 3: Classification and regression tasks on cognitive tests and ICD labels in UKB.

Abbr. Full name of test Field_ID fMRI-DWI pair # Class # Value range

Nmem Numeric memory 4259 7101 - [0, 2]
FI Fluid intelligence 20016 7234 13 -
Trail Trail making 6351 6933 10
Puzzle Matrix pattern completion 6373 6869 13 -
SymSub Symbol digit substitution 23324 6865 - [0, 35]
Vocab Vocab level 26302 6357 - [0.1084, 0.6161]
Tgame Tower game 21004 6800 - [0, 18]
Wmatch Word matching 20197 6933 - [0, 10]
Alcohol Alcohol frequency 1558 7886 6 -
Sleep Sleeplessness 1200 7886 3 -
ICD-Ch ICD10 – Chapter level 41270 7927 22×binary -
ICD-top ICD10 – A00 to Z99 with > 10% cases 41270 7927 4×binary -

with minimal variance. Its dominance is especially pronounced in tasks with
strong cognitive or behavioral relevance (e.g., FI, Trail, Puzzle), where it
improves performance by 30 to 60 plus points relative to the best alternative.
Overall, these results demonstrate that incorporating multi-hop SC detours
provides a robust, interpretable, and consistently superior predictive signal
across diverse domains compared to both conventional and SOTA models.

Fig. 4 below show ROC curves for Hypertension binary classification
in ICD-top and Chapter VI - Diseases of the nervous system in ICD-Ch,
respectively. Across both clinical prediction tasks, NeuroDetour demon-
strates competitive or superior performance relative to existing graph- and
transformer-based baselines, though the overall classification difficulty differs
substantially between conditions. For Hypertension, all models show only
modest discriminative ability, as reflected by AUC values hovering near chance,
but NeuroDetour (AUC = 60.80) outperforms all baselines, indicating that
its detour-based features provide performance boost. In contrast, prediction
of past diseases of the nervous system proves even more challenging: all
methods perform close to random (AUC ranges from 45 to 50), and the ROC
curves of all models, including NeuroDetour (AUC = 50.19), cluster tightly
around the diagonal. This pattern suggests that nervous-system disorders in
UKB exhibit limited correspondence with resting-state connectivity patterns,
whereas systemic traits like hypertension may retain modest but detectable
neurofunctional signatures that NeuroDetour captures more effectively than
existing architectures.
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Table 4: Performance comparison on 12 classification/regression tasks on cognitive tests
and ICD in UKB CORR. Each cell has two rows of scores corresponding to the Metric in
Table 3, where ∗ indicates p ≤ 0.05.

Metric MLP GCN BrainGNN BolT BNT Graphormer NAGphormer NeuroDetour

Nmem MSE↓
r↑

0.313±0.210

0.013±0.023

0.039±0.013

0.037±0.013

0.164±0.251

-0.014±0.025

0.030±0.012

0.020±0.015

0.011±0.002

0.039±0.025

0.018±0.002

0.004±0.017

0.014±0.003

0.014±0.011

0.012±0.002

-0.008±0.016

FI Acc↑
F1↑

66.97±3.14

67.26±2.88

20.60±0.92

8.11±0.62

24.27±12.01

18.45±13.11

20.55±0.63

9.38±1.29

25.73±2.79

16.56±3.02

19.54±1.19

14.29±1.22

20.46±0.97

7.07±0.73

87.60±0.43*
87.60±0.42*

Trail Acc↑
F1↑

58.37±3.39

63.83±2.88

57.46±1.39

41.96±1.66

50.63±14.83

39.57±6.60

57.47±1.39

41.96±1.66

57.47±1.39

41.96±1.66

46.53±11.08

38.94±4.63

57.48±1.39

41.98±1.66

92.04±0.30*
91.83±0.32*

Puzzle Acc↑
F1↑

56.28±23.65

56.18±24.44

20.47±1.18

8.98±1.30

24.83±5.36

17.48±9.92

19.89±0.68

9.58±1.85

23.96±1.03

15.58±2.04

18.16±0.68

13.44±1.33

20.18±1.14

7.15±0.44

87.61±0.40*
87.61±0.40*

SymSub MSE↓
r↑

380.482±19.297

-0.005±0.036

53.636±10.801

0.083±0.014

91.259±81.809

0.012±0.025

31.086±2.423

0.003±0.018

28.781±1.058

0.116±0.012

60.121±36.967

-0.007±0.046

68.521±6.051

-0.015±0.015

28.626±0.755

0.004±0.020

Vocab MSE↓
r↑

0.105±0.075

0.011±0.014

0.013±0.003

0.007±0.022

0.029±0.009

-0.005±0.026

0.013±0.003

-0.015±0.030

0.007±0.000

0.031±0.021

0.024±0.007

0.002±0.010

0.008±0.001

0.017±0.021

0.008±0.001

0.017±0.018

Tgame MSE↓
r↑

111.103±4.398

-0.006±0.030

18.206±2.630

0.029±0.024

13.211±2.547

0.004±0.030

11.357±0.914

0.007±0.020

10.163±0.460

0.096±0.024

23.417±9.972

-0.014±0.022

13.040±1.059

-0.004±0.024

10.024±0.161*
0.012±0.016

Wmatch MSE↓
r↑

54.281±3.946

-0.001±0.013

8.935±1.258

0.049±0.028

8.301±0.806

0.023±0.032

7.354±0.187

0.007±0.032

6.890±0.262

0.093±0.018

10.313±5.235

0.005±0.027

8.482±0.399

-0.002±0.011

6.731±0.075*
0.021±0.021

Alcohol Acc↑
F1↑

66.17±26.56

65.65±27.81

31.87±0.54

23.16±0.61

34.67±6.23

24.59±8.93

29.73±1.40

21.42±1.58

36.24±1.45

27.38±0.97

29.67±0.71

22.77±0.83

30.20±0.74

20.80±1.34

88.96±0.52*
88.94±0.53*

Sleep Acc↑
F1↑

76.55±22.50

75.25±25.15

45.71±1.26

28.80±1.41

51.03±8.55

39.00±13.49

45.60±1.29

28.92±1.26

47.23±2.09

34.59±6.32

42.65±2.52

35.84±2.66

45.71±1.26

28.69±1.34

91.11±0.66*
91.10±0.67*

ICD-Ch AUC↑ 52.48±8.47 48.75±4.01 50.82±2.62 47.51±8.20 51.64±5.62 49.63±1.78 47.84±7.60 53.41±10.14*
ICD-top AUC↑ 56.17±2.46 51.69±2.69 53.00±1.83 50.05±2.31 55.63±4.36 52.13±1.66 54.81±3.34 57.63±5.63*

Table 5: Zero-shot learning between four datasets using BOLD as node attributes, where
F1 scores are listed, resting/tasking classification is tested for HCPA and UKB, and ‘bold’
and ‘underline’ denote the first and the second rank, respectively.

HCPA→UKB UKB→HCPA OASIS→ADNI ADNI→OASIS

static dynamic static dynamic static dynamic static dynamic

Graphormer 39.09±28.14 50.97±4.01 57.78±14.50 64.36±7.90 77.63±2.89 77.24±7.34 79.69±7.71 83.55±6.90

NAGphormer 74.49±4.01 70.17±1.31 89.77±0.94 73.44±0.70 73.11±5.90 78.09±7.24 69.63±10.99 78.09±7.08

NeuroDetour 91.29±2.10 72.08±2.15 90.61±3.65 75.62±2.98 79.78±3.53 81.57±7.24 80.03±8.50 79.65±6.35

4.6. Zero-shot Learning
Although neural activity classification and cognitive disorder diagnosis

are common tasks in computational neuroscience, applying zero-shot learn-
ing, where a model is trained and validated on one dataset and then tested
on another, remains rare. Zero-shot learning is evaluated for HCPA/UKB
(resting-versus-task classification) and ADNI/OASIS (AD-versus-CN classifi-
cation), demonstrating the clinical generalizability. Specifically, we adhere
to the same protocol described above: use five-fold cross-validation on the
train-validation split of one dataset to select the best model parameters, then
evaluate performance on the corresponding fold of the other dataset.

17



Figure 4: Receiver Operating Characteristic (ROC) curves comparing the True Positive
Rate (Sensitivity) versus the False Positive Rate (1 − Specificity) across models, where
Hypertension is ICD10 code I10, and Chapter-VI is ICD10 code chapter of diseases of the
nervous system.

Given that the three SOTA brain models are all sensitive to the node num-
ber of the graph, they are not included in this zero-shot learning experiment.
Therefore, F1 scores are listed in Table 5 in comparison against two generic
graph transformers, which are designed for various vertex-cardinality. It is
worth highlighting that our model outperforms all competitors under different
data settings except for ADNI→OASIS dynamic. Specifically, NeuroDetour
can surpass the best of others with a 16.8 score for HCPA→UKB static.
Although the performance of zero-shot learning by NeuroDetour still has an
observable gap to the fully supervised version shown in Fig. 3, results indicate
that the neural pathway pattern learned by NeuroDetour is more consistent
than the FC pattern across datasets.

Herein, we focus on the patterns of neural pathways that contribute to
prediction in our NeuroDetour . As we introduced in Sec. 3.1, NeuroDetour is
in fact weighting neural pathways to obtain the feature representation of the
brain network. Therefore, the neural pathways can be sorted by their weights
produced by our model. In this section, the top detour that has the top-1
weight (see Fact 3.1) per FC connection in ADNI and OASIS is analyzed with
a significance score and visualized.
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4.7. Detour Path Statistics
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Figure 5: Circular connectograms connect two brain nodes, one of which is the endpoint of
a detour path, and another has detours passing through, where link color indicates the
normalized frequency and only the top-10 are displayed.

Per dataset, there are various groups of subjects depending on the label,
sex, age, or phenotype. In Fig. 5, the differences in length of detour pathway
are analyzed using the independent t-test on subjects with different labels
or sex. Fig. 5 shows the histogram of the top detours used by NeuroDetour
starting at a node and passing through another node. The color of the
connection denotes the normalized frequency ∈ [0, 1] of the transmission node,
and only the top 10 connections are displayed. It is clear that the top detours
in both datasets (160k detours in ADNI and 943k detours in OASIS) share
similar transmission lobes between different labels and sex, even though the
frequency rank is different. For example, NeuroDetour consistently learns
from detours connecting the temporal, parietal, occipital, and limbic lobes to
classify AD in ADNI. While in OASIS, detours in all cortical lobes except
the frontal lobe are contributing for AD prediction.

In Fig. 6 (b) and (e), the relationship between age or Mini-Mental State
Examination (MMSE) and the length of the detour is analyzed using linear
regression for ADNI, where the average and standard deviation of the y-axis
is displayed with the Pearson correlation R, t-test p-value, and n the number
of detours starting at a lobe. It is clear that age is predominantly positively
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Detour pathway length vs MMSE: ADNI (n=160,576)
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Detour pathway length vs Age: ADNI (n=160,576)
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Figure 6: (a) Among CN subjects at age 65 to 70, the histogram of detour pathways that
start at one node and pass through another node, where only top-10 pathways are displayed
with the color indicating the probability. (b) Path length versus age within cortical lobes
with the linear regression, where dots represent the mean of age, R the Pearson correlation,
p the significance score, and n the number of detours. (c) Among AD subjects at age 70
to 75, the histogram of detour pathways. (d) Among AD subjects with MMSE 27 to 28,
the histogram of detour pathways. (e) Path length versus MMSE. (f) Among CN subjects
with MMSE 28 to 29, the histogram of detour pathways.

correlated with path length in CN subjects, while AD subjects consistently
show a lower correlation |R| ≤ 0.07 due to relatively limited detour amount.
For MMSE, the correlation is the opposite since lower MMSE indicating a
higher risk of AD. In (a), (c), (d), and (f), the histograms of detours within
each CN and AD group are illustrated. Unlike the similar pattern shown in
Fig. 5, two pairs, (a)-(c) and (d)-(f), are differentiated in terms of the highest
connection (white curves) occurring within the parietal lobe and between the
limbic and temporal lobes in the CN and AD groups, respectively.

Fig. 7 shows the same analysis and illustration in OASIS. Given that
more brain regions are partitioned in OASIS atlas than ADNI, the number
of detours for each lobe is greater (n > 105) in this analysis as shown in (b)
and (e), resulting in greater significance (smaller p) and stronger correlation
(larger |R|) in both groups for age versus length and AD group for MMSE
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Detour pathway length vs Age: OASIS (n=943,002)

Detour pathway length vs MMSE: OASIS (n=943,002)
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Figure 7: (a) Among CN subjects at age 60 to 65, the histogram of detour pathways that
start at one node and pass through another node, where only the top-10 pathways are
displayed with the color indicating the probability. (b) Path length versus age within
cortical lobes with the linear regression, where dots represent the mean of age, R the
Pearson’s correlation, p the significance score, and n the number of detours. (c) Among
AD subjects aged 65 to 70, the histogram of detour pathways. (d) Among AD subjects
with MMSE 25 to 26, the histogram of detour pathways. (e) Path length versus MMSE.
(f) Among CN subjects with MMSE 29 to 30, the histogram of detour pathways.

versus length. However, two pairs, (a)-(c) and (d)-(f), are less differentiated
than ADNI since most connections pass through multiple lobes.

4.8. Visualization of Detour
We overlap AD and CN groups in Fig. 8 (a) to highlight the differences

of detour, where we can observe long range detour from gyrus and sulcus of
the mid-anterior cingulate cortex (IG_and_S_cingul.Mid.Ant) to middle
occipital gyrus (IG_occipital_middle). In Fig. 8 (b), to show examples,
we visualize three structural pathways corresponding to three functionally
connected node pairs (highlighted in blue). Each pathway is depicted with
uniformly colored links to denote a detour. These node pairs were selected on
the basis of FC links that exhibited significant differences (p ≤ 0.05) between
AD and CN subjects in the OASIS dataset, as determined by a t-test. To
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Figure 8: Examples of detour differences for AD and CN subjects in the OASIS dataset:
(a) AD/CN comparison on the top frequent detours learned by NeuroDetour , where only
the top 10 paths are displayed. (b) The visualization of top detours corresponding to three
significant FC links.

mitigate the influence of inter-subject variability in FC (see Sec. 2), we
restricted our analysis to FC links between regions in the subcortical struc-
tures, entorhinal cortex, occipital lobe, and parietal lobe—areas consistently
associated with AD progression [57, 58].

Upon comparing the resulting detour visualizations, it becomes clear that
AD subjects require longer SC detours to sustain the same direct FC connec-
tions, whereas CN subjects rely on shorter, typically two hops, pathways. This
finding suggests that a diseased connectome may recruit additional SC links
from unaffected regions in order to compensate for lesion-induced disruptions
[59, 60]. This pattern is consistent with the notion of compensatory rerouting,
e.g., neurodegenerative processes in AD disrupt direct SC link [61], forcing
information flow to traverse longer alternative SC routes to preserve functional
communication. Such increases in detour length align with prior reports of
posterior-to-frontal recruitment in AD [62], where the brain leverages intact
long-range fibers to compensate for localized structural loss.

While this interpretation is biologically plausible, we also acknowledge
that several potential confounds may cause a false positive biomarker. Factors
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Figure 9: Ablation study of various lengths of the neural pathway that is visible to
NeuroDetour . Static BOLD is set as node attributes in this experiment. The blue or
orange shade is the range of error bars, and the lines are average F1 scores.

such as global degradation in SC [63], or diminished FC signal quality in AD
[64] could also contribute to apparent increases in SC pathway length. These
sources of variability may amplify or mimic compensatory changes in the SC-
FC relationship. Nonetheless, the consistency of forming SC detours across
multiple node pairs and two datasets suggests that the observed pattern
reflects a systematic reorganization of anatomical rerouting rather than
incidental measurement noise. Such evidence underscores the interpretability
of NeuroDetour by demonstrating how alterations in SC can support observed
FC under pathological conditions.

4.9. Ablation Studies
Maximum detour length. Because NeuroDetour constrains the maximum
length of detour by the number of attention heads in the MHSA module, we
performed an ablation study in which we varied the head count H from 1
to 8, keeping all other hyperparameters fixed. As shown in Fig. 9, the F1
score (green curves) on HCPA and UKB, both of which employ a fine-grained
parcellation of 333 regions, reaches its maximum at H = 7. In contrast,
for ADNI and OASIS, whose atlases contain fewer than 200 regions, the F1
score remains essentially constant across all values of H. This divergence
can be explained by the fact that, in high-resolution parcellations (HCPA,
UKB), reconstructing a given neural pathway often requires more hops, and
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Figure 10: Ablation of none branch (a vanilla Transformer), single branch, and twin branch
of NeuroDetour on four datasets with static BOLD as node attributes.

thus more attention heads, than in lower-resolution parcellations (ADNI,
OASIS), where larger regions can span the same anatomical distances with
fewer intermediate nodes.

Model architecture. The twin-branch architecture is central to NeuroDetour ,
enabling the integration of SC–FC coupling into the deep model. Ablating
this design by removing one or both branches highlights its importance. As
shown in Fig. 10, the full twin-branch configuration consistently achieves the
best performance across all datasets, with the sole exception of the F1 score
on OASIS. Although TD-MHSA leverages detour-based adjacency to capture
brain community structure (Sec. 2), the fused SC–FC representations enforced
by the twin-branch consistency loss LTD contribute more substantially to the
performance gains.

Loss weighting. The consistency loss LTD is added to the final loss with 1×
weight by default. To show the sensitivity of NeuroDetour to this loss weight,
we evaluated the model using 0.25×, 0.5×, 1×, and 2× under data setting of
static CORR. For nonclinical applications, the neural activity classification
in the HCPA and UKB datasets (first two rows in Table 6) is not sensitive to
loss weighting, given the minor fluctuation of accuracy scores. In contrast,
AD prediction shows an incline trend of F1 score and a peak between 0.5×
and 1×.

Model depth. Deep models have a scalable model size according to their
flexible depth by stacking their components. In Fig. 11 (a), we test Neu-
roDetour and competitors with various model layer numbers. It is obvious
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Figure 11: Bubble plots of ablation studies on (a) various model depths, (b) FC, and (c)
SC thresholds (thr.) across all datasets using static BOLD as node attributes.

that NeuroDetour outperforms all competitors on four datasets regarding the
oversmoothness problem. This is reasonable since the network architecture
of NeuroDetour uses a graph-transformer architecture, making it far less
susceptible to oversmoothing. In contrast, none of the existing methods can
hold the performance rank after altering the layer number, e.g., NAGphormer
mostly has the second rank except for the ADNI dataset.

FC threshold. FC is constructed as graph data by the threshold of the Pearson
coefficient. The rationale behind choosing thresholds 0.3, 0.5, and 0.7 is that
the graph degree is linearly correlated to the threshold (Pearson correlation
|R| > 0.9). Therefore, evenly distributed thresholds are chosen to show
the robustness rather than nearby thresholds, which lead to similar graph
topology and neural pathways.

In Fig. 11 (b), different FC thresholds are used to evaluate the robustness
of NeuroDetour . More fluctuations appeared when altering the FC threshold
than the layer number. Graphormer and BNT show more than 20% drops
in F1 scores on HCPA and UKB datasets, respectively, while NeuroDetour
consistently achieves the top performance on HCPA and UKB, with only 0.5
and 0.7 FC thresholds in ADNI and OASIS where it is not ranked first.
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Table 6: Performance of NeuroDetour using various weights of the consistency loss LTD

under data setting of static CORR.

Metric 0.25× 0.5× 1× 2× 0.25× 0.5× 1× 2×

HCPA Acc 97.43±0.73 97.49±0.33 97.78±0.17 97.51±0.33 ADNI 83.48±5.31 82.00±7.31 83.48±5.31 82.07±6.86

F1 97.44±0.73 97.49±0.33 97.78±0.18 97.51±0.32 79.63±6.67 78.33±9.24 80.69±7.85 77.54±8.34

UKB Acc 99.07±0.06 99.08±0.24 99.17±0.11 99.05±0.14 OASIS 87.99±5.17 90.02±3.80 89.52±3.66 88.82±4.86

F1 99.07±0.06 99.08±0.24 99.17±0.11 99.05±0.14 85.98±5.16 86.94±5.76 85.76±5.57 86.80±4.13

Table 7: Performance comparison using different parcellation schemes, Gordon333 and
AAL116, under data setting of static CORR, where the F1 scores are listed.

BrainGNN BolT BNT NeuroDetour

UKB HCPA UKB HCPA UKB HCPA UKB HCPA

Gordon 97.54±0.52 91.50±3.00 99.13±0.33 95.24±2.50 98.71±0.35 95.35±1.04 99.27±0.17 97.96±0.30

AAL 98.39±0.38 90.92±1.41 99.02±0.25 96.38±0.43 99.01±0.22 95.92±0.66 99.07±0.26 96.90±0.41

SC threshold. SC detours are constructed based on the threshold of fiber
amount (0.1 by default). To ensure that performance is not dependent on SC
threshold as well, we vary the SC thresholds from 0.1 to more conservative
values of 0.3 and 0.5, across all four datasets evaluating NeuroDetour . The
results, as depicted in the Fig. 11 (c), show that performance is robust across
the tested SC thresholds, where the F1 score varies slightly (less than 5% F1
score change) depending on the dataset and threshold, and does not exhibit
a strong, inverse dependency on the SC threshold.

Brain parcellation. Two different parcellation schemes, Gordon333 and AAL116,
are tested on UKB and HCPA datasets in Table 7. We can observe not only
the best performance by our NeuroDetour on both datasets and parcellation
schemes, but also the same trend. BrainGNN and BolT show different best
parcellation schemes for UKB and HCPA. In contrast, BNT and NeuroDetour
perform the best using AAL and Gordon, respectively, for different datasets.

In summary, our ablation studies show the rational settings for the hyper-
parameter and the architecture of NeuroDetour along with the best robustness
when altering layer number and FC threshold.

4.10. Computational Costs
Our experiments were conducted on a local computing platform equipped

with two Intel(R) Xeon(R) Gold 6448Y CPUs and four NVIDIA RTX 6000
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Table 8: Model computational costs.

BrainGNN BNT BolT Graphormer NAGphormer NeuroDetour

Param. number 7.30M 1.57M 1.58M 0.30M 0.26M 0.69M
Preprocess time (ms/graph) - - - 270 40 -
Train time (ms/graph) 7.24 1.82 3.83 2.79 3.92 1.61
Test time (ms/graph) 2.61 0.64 1.83 0.90 1.85 0.67
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Figure 12: The correlation between testing runtime (ms/graph) and graph node number
and degree.

Ada GPUs. All state-of-the-art models were run using their default hyperpa-
rameters, except for Graphormer, for which we used our own implementation.
Detailed settings can be found in GitHub4. The computational costs can be
indicated by the learnable parameter amount and computing time in OASIS
dataset as listed in Table 8.

Since NeuroDetour learns from neural pathways, the runtime is also
correlated with node number and graph degree (Fig. 12). Based on the
definition of neural pathway in SC detours, a higher SC degree leads to more
pathways. Although more nodes of the brain graph bring more input tokens
to NeuroDetour , runtime is negatively correlated with node number (left
panel in Fig. 12) due to the predominant impact from SC degree (right panel
in Fig. 12). FC degree shows no correlation with the testing runtime.

5. Discussion

Recent studies indicate that structural and functional connectivity do
not exhibit a uniform one-to-one correspondence across the human brain.
Instead, it has revealed a heterogeneous relationship between structural and
functional connectivity, with some brain regions exhibiting stronger coupling
between structure and function and others exhibiting weaker coupling [16, 39].

4https://github.com/Chrisa142857/neuro_detour
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Motivated by this heterogeneity, NeuroDetour models each functional interac-
tion as potentially supported by multiple structural pathways, extending the
SC-FC relationship to a multivariate, pathway-based formulation. Inspired
by this, we first introduce a new connectivity metric, i.e., topological detour,
using SC-FC coupling so that inter-subject variations can be weakened as we
present in Section 2. A deep model, NeuroDetour , is then designed follow-
ing the same idea, and thus it performs more accurately and robustly than
existing methods for human connectome recognition. Results on zero-shot
learning further demonstrate the potential of NeuroDetour to be a foundation
model for network neuroscience.

Importantly, NeuroDetour can be situated within the broader context
of computational neuroscience frameworks that focus on bridging structural
and functional connectivity. Previously, biophysical models such as dynamic
mean-field and neural mass models [65, 66] simulate the emergence of FC by
modeling neural activity as the result of interactions through SC graphs, mod-
ulated by factors such as conduction delays, local dynamics, and stochastic
noise. These models inherently capture indirect, multi-hop influences through
dynamics and oscillatory coupling between SC and FC. While these tradi-
tional approaches provide rich mechanistic insight from simulation, they are
computationally expensive and difficult to scale or generalize across datasets.
In contrast, NeuroDetour offers a data-driven, scalable alternative that ex-
plicitly encodes multi-hop SC pathways as learnable feature representations.
This distinction highlights the complementary nature of the two paradigms:
Biophysical simulations yield mechanistic understanding through dynamic
modeling, whereas our deep learning-based approach learns topological detours
from multivariate SC-FC coupling that support neural activity prediction
at scale. The structural detour thus serves as a biologically plausible yet
computationally tractable proxy for complex multi-hop interactions modeled
implicitly in the dynamic system of the human mind.

While NeuroDetour demonstrates strong empirical performance and intro-
duces an interpretable framework for structure-function coupling via multi-hop
neural pathways, several limitations warrant discussion.

First, by relying on a detour adjacency matrix rather than exhaustively
searching all simple paths, our approach makes a deliberate trade-off between
tractability and completeness. In practice, the number of possible neural
pathways supporting a multi-hop FC link grows exponentially with network
degree, particularly in dynamic connectomes, where transient connections
further increase graph density. By pruning this search space to a subset
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of candidate detours, NeuroDetour reduces computational complexity but
inevitably avoids finding all simple paths containing weak connections that also
contribute to functional coupling. Consequently, the feature representations
learned by NeuroDetour may not fully disentangle overlapping or redundant
pathways, limiting its theoretical capacity to distinguish among all potential
SC-FC interplay. This constraint is especially pronounced in dynamic data,
as evidenced by the lower performance on dynamic graphs (see Fig. 3), where
the higher FC degree introduces an explosion of candidate detours.

Second, the use of a detour adjacency matrix introduces a deliberate
simplification to address the NP-hard problem of searching all simple paths in
the connectome. Although this design substantially improves computational
efficiency and enables scalable learning across large datasets, it may obscure
biologically relevant pathways that do not conform to the detour criteria,
e.g., SC detours for multi-hop FC paths. Indirect or weakly connected SC
links, which are known to significantly influence functional connectivity [16, 8],
might be underrepresented or entirely omitted among this category.

To mitigate these limitations and advance the biological validity of
structure-function modeling, we identify several potential strategies for future
works:

1. Empirical validation of predicted pathways: t-test the top-ranked neural
pathways identified by NeuroDetour with SC links in large-scale studies
(e.g., UK Biobank) could assess their neurobiological plausibility.

2. Subject-specific detour criteria: Altering the detour criteria on a per-
subject basis, such as SC detours for k-hop FC paths (k determined
by subject variations) instead of the direct FC link, could cover more
biologically relevant detours.

By addressing these directions, future iterations of NeuroDetour could
enhance both the interpretability and neurobiological fidelity of learned rep-
resentations, contributing to a more accurate and mechanistic understanding
of structure-function coupling in the human brain.

6. Conclusion

In this work, we present NeuroDetour , a graph transformer framework
designed to model physical neural pathways through a novel multivariate
SC-FC coupling mechanism. Grounded in neuroscience insight, NeuroDetour
leverages a twin-branch architecture to produce feature representations that
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integrate multi-hop SC pathways and direct FC links, enabling a biologically
motivated modeling of brain organization. Our extensive experiments across
large-scale datasets, including HCP and UKB, demonstrate that NeuroDetour
outperforms SOTA brain graph models and generic graph transformers on
tasks such as neural activity classification and cognitive disorder diagnosis.
In particular, the framework achieves robust performance under various data
settings, including zero-shot learning in unseen subjects, resting/task state
classification, and Alzheimer’s diagnosis, highlighting both its generalizability
and clinical relevance.

Beyond predictive accuracy, NeuroDetour provides interpretable insights
through pathway-level statistics in ADNI and OASIS. By identifying top-
ranked SC detours that contribute to AD predictions, NeuroDetour offers an
interpretable bridge between pathway length, the histogram of brain regions
where detour pathways passing through, cognition related phenotype (MMSE),
sex, and age. These findings are consistent with neuroscientific hypotheses
suggesting that longer, indirect pathways may support residual function in
pathological connectomes, particularly in disorders like Alzheimer’s disease.

Overall, NeuroDetour marks a step toward foundational models in com-
putational neuroscience that not only perform well across downstream appli-
cations, but also begin to reveal the latent structure-function relationships
that underlie brain dynamics and cognition.
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Appendix A. Accessibility

All data can be accessible via internet (HCPA5, UKB6, ADNI7, OASIS8).
The licenses to obtain that data can also be accessed on the websites. The
preprocessing algorithms are FSL software [67] and a surface seed-based

5https://www.humanconnectome.org/
6https://www.ukbiobank.ac.uk/
7https://adni.loni.usc.edu/
8https://sites.wustl.edu/oasisbrains/
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probabilistic fiber tractography [68]. The codes and data split settings can
be acquired via this GitHub repository9.

Appendix B. Data Preprocessing

The preprocessing of T1w, fMRI, and DWI data follows the standardized
workflow summarized in this section. All processing was performed using
publicly available, community-validated pipelines to ensure reproducibility
across datasets.

Appendix B.1. T1-Weighted MRI Processing
We first preprocess the anatomical T1w images to generate tissue masks

and cortical parcellations that serve as the anatomical reference for both
fMRI and DWI.

• Brain extraction and tissue segmentation. Skull stripping and seg-
mentation of gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) were conducted with FSL [67]. Example of maps are shown
in green and purple boxes of Fig.1.

• Cortical parcellation. The cortical surface was then parcellated
into regions according to the atlases used in each experiment (e.g.,
Destrieux160, AAL116, and Gordon333). These regions define the
nodes for both structural and functional connectivity matrices.

Appendix B.2. Functional MRI Processing (fMRIPrep)
All fMRI preprocessing was performed using fMRIPrep [37], a widely

adopted and fully standardized pipeline https://fmriprep.org/en/stable/.
The key steps include: (1) Motion, distortion, and slice-time correction using
the pipeline’s integrated routines. (2) Susceptibility distortion correction via
fieldmaps registration, depending on dataset availability. (3) Co-registration
to T1w space using boundary-based registration. (4) Nuisance regression
including motion parameters, WM/CSF signals, and high-pass filtering, follow-
ing fMRIPrep’s default confounds model. (5) Regional time-series extraction.
Mean BOLD signals were extracted within each atlas parcel after preprocess-
ing.

9https://github.com/Chrisa142857/neuro_detour
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Functional connectivity (FC). Pearson correlation coefficients were computed
between all pairs of regional time series. To reduce weak or noisy correla-
tions, we applied a threshold of 0.5, keeping only connections with absolute
correlation above this value.

Appendix B.3. Diffusion MRI Processing (QSIPrep)
All diffusion-weighted image preprocessing was performed using QSIPrep

[38], an established BIDS-App for diffusion pipelines https://qsiprep.
readthedocs.io/en/latest/. QSIPrep performs: (1) Eddy-current, sus-
ceptibility, and motion correction using robust joint modeling. (2) Gradient
table correction and B0 alignment across DWI volumes. (3) Tensor fitting to
obtain diffusion tensor images (DTI) [69].

Structural connectivity (SC). We used surface-seeded probabilistic tractogra-
phy [68] on QSIPrep outputs to generate whole-brain fiber trajectories. For
each pair of atlas regions:

SC weight =
Nconnecting streamlines

Ntotal streamlines in the brain
. (B.1)

To suppress noisy or biologically implausible fibers, we applied a threshold of
0.1 to the SC weight matrix.

Appendix B.4. Final Outputs
The resulting FC and SC matrices in RNnode×Nnode constitute the two brain

networks used in all downstream modeling analyses.

Appendix C. Proof of Fact

Proof. The first is to expand Eq. (1) by using the definition of detuor adjacent
matrix.

fTD(X) = Concat
(
X̄1, . . . , X̄H

)
W̄

=
H∑

h=1

X̄hW̄i∼j, i := (h− 1) ∗ C, j := h ∗ C,
(C.1)

where W̄i∼j is a slice of weights W̄ with C entries, and we have

X̄h = Softmax
(
(Xᾱh)(Xβ̄h)

T + fmask(D
h)
)
(Xγ̄h) . (C.2)
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In plain words, Softmax in the above equation is the standard softmax
operation that only involves h-hop connected columns and applies on every
row, then it produces a self-attention matrix S ∈ RN×N , where

Sij =

{
Softmax (xi)j if j ∈ argtrueDh

i,·,

0 otherwise.
(C.3)

where x denotes the term inside Softmax in Eq. C.2. Then

fTD(X)i =
H∑

h=1

∑
j∈argtrueDh

i,·

SijXjγ̄hW̄i∼j. (C.4)

Herein, fTD(X)i weights all nodes of H-long neural pathways by sorting
results PH

i . By assigning each node with the learnable weights Sijγ̄hW̄i∼j

since Sij is a scalar that can be moved aside to matrices, each path weights is
thus represented by this weight consists of learnable parameters and can be
extracted to explain the contribution by neural pathways to any downstream
application. This can finish the proof.

Appendix D. Abbreviations

Please refer to Table D.9 for the full name of brain sub-network abbrevia-
tions.
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