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Abstract

Light sheet fluorescence microscopy (LSFM) has emerged as a revo-
lutionary imaging modality for investigating intact three-dimensional
brain structures at the teravoxel scale. In parallel, high-throughput
computational methods, especially deep learning approaches, have
opened new avenues for uncovering the pathophysiological mechanisms
of neurological diseases through LSFM technology. Recent advances in
optics and tissue clearing methods have allowed whole-brain imaging at
cellular resolution in three dimensions, and the integration of artificial
intelligence (AI) has facilitated the identification of disease-related cel-
lular profiles and morphological markers. Machine learning techniques
for stitching, segmentation, classification, super-resolution, and regis-
tration, therefore, are promoted to uncover biological patterns that are
not visible to human eyes, yet related to neuroinflammatory and neu-
rodegenerative diseases. However, analytic pipelines have been designed
differently for various animal models and brain structures, leading to
challenges in feasibility and compatibility within this emerging field of
data-driven LSFM image analysis. Here, we present an overview of
current pipelines, examine existing and forthcoming challenges as the
LSFM community advances, demonstrate their implications for neuro-
logical disease applications, and propose potential solutions.
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1. INTRODUCTION

As we enter the era of artificial intelligence (AI), AI for neurological diseases shows great potential for

computer-aided prognosis (I}, 2), diagnosis (3]), and therapeutics (4). The past decades have witnessed di-
verse neurological applications of Al and machine learning, focusing on magnetic resonance imaging (MRI),
electroencephalogram (EEG), transcriptomic, metabolomic, phenotypic data, and microscopy image anal-
ysis (B). In contrast, microscopy imaging techniques are not widely used for the investigation of early-stage
neurological diseases, as the acquisition of suitable brain tissue is invasive and carries a significant risk
(6). This is reflected by the large difference in publication numbers in neurology of 82 versus 2,420 on the
topic of microscopy and MRI for neurology, respectivelyﬂ However, microscopy reveals structural details
linked to neurological diseases, which non-invasive methods are struggling with in terms of resolution and
specificity. Investigating disease-related structural changes in the nervous system requires imaging hetero-
geneous structures at vascular, cellular, and subcellular scales across subject populations. For example,
alterations in the cerebrovascular system serve as a possible marker of Alzheimer’s disease (AD), as early
changes in blood vessels are directly associated with tau pathology (7).

The parallel development and maturation of public datasets have fueled the neurological analysis rev-
olution, providing access to longitudinal and multimodal data, including MRI, EEG, phenotypes, and
genotypes (8, [9, [T0, [T1)). Diverse innovations in unified standards in the preprocessing of whole-brain data
(12, 13)) attract interests in machine learning, e.g., large-scale modeling (14, [I5]) and structure-function
coupling (16} [I7)), for neurodegeneration. Nonetheless, microscopy is increasingly being adopted as an al-
ternative modality to satisfy the desire to see structural details in specific neurons. In early studies, cell
localization and structure segmentation within brain sections, e.g., detecting cells stained for the somato-
statin receptor based on confocal fluorescence microscopy (I8)), suggest new strategies for the treatment of
neurological and psychiatric disorders from microscopy. On the other hand, another modality, bright field

!Conducted on November 3, 2025, wusing searching strings ‘(MRI[Title/Abstract]) AND (neurol-
ogy[Title/Abstract])’ and ‘(microscopy[Title/Abstract]) AND (neurology[Title/Abstract])’ for MRI-related and
microscopy-related articles, respectively, on page https://pubmed.ncbi.nlm.nih.gov/
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microscopy images, has been curated and released as part of the Cancer Genome Atlas (TCGA) database
for the detection of glioblastoma multiforme (GBM) in brain sections (19). Although the quantity of brain
studies based on the TCGA dataset—1,343 articles in PubMecﬂ—iS growing, this type of microscopy image
analysis still studies a partial brain. The whole-brain analysis for neurological diseases is based on a new
modality.

Although light sheet fluorescence microscopy (LSFM) and three-dimensional (3D) tissue clearing were
present more than 100 years ago (20} 21)), a guinea-pig cochlea was imaged by the first integration of tissue
clearing and LSFM after approximately 90 years (22). Brain LSFM was then present in the 2000s as a
breakthrough that enabled, for the first time, 3D cellular-level mapping of complete neuronal architectures
in intact mouse brains, marking a pivotal moment in whole-brain imaging (23). Afterward, initial attempts
of machine learning approaches that analyze whole-brain LSFM have been made on local structures, e.g.,
neuronal arbor segmentation (24). However, LSFM imaging of the whole brain introduces 10? x more voxels
than non-invasive neuroimaging, adding challenges of stitching, visualization, and registration to machine
learning in such a teravoxel volumetric image for cell and structure profiling (25, [26]). Although teravoxel
image analysis in the volume electron microscopy modality characterizes the ultrastructure of the brain,
including synapses (27)) and axons (28), the existing study (28)) for neurological diseases is based on 3D
gigavoxel images around local patches without scaling up to the whole brain. Therefore, in this review
of teravoxel microscopy image analysis for neurological diseases, the term ‘teravoxel’ specifically refers to
LSFM. Here, we explain the basic principle of teravoxel image analysis in the era of Al and its unique
benefits and challenges over non-invasive neuroimaging for neurological diseases. The evolution of teravoxel
microscopy image analysis is then reviewed, with a focus on profiling the entire mammalian brain. We then
discuss the promise of neurology studies powered by teravoxel image analysis based on whole-brain neuron
morphology on the cellular scale.

2. Al FOR NEUROLOGICAL DISEASES

The convergence of Al for neurological diseases represents a transformative paradigm in neuroscience.
Traditional computational approaches in neurology are based on preprocessing frameworks for in vivo
neuroimaging (Fig. 7b)7 allowing unprecedented characterization of disease-related alterations in regional
signal, averaged surface, and connectivity. Advanced deep learning frameworks, including convolutional
neural networks (Fig. [It), and graph neural networks (Fig. [I), have demonstrated remarkable capabilities
in neurological applications, such as brain-to-stimuli decoding (29)) and human connectome analysis (L7).

The integration of high-resolution imaging technologies with Al represents this shift toward large-scale
image analysis for neurological disease. LSFM generates teravoxel-scale datasets that capture cellular-level
detail across entire brain volumes (Fig. ), providing opportunities for Al-driven analysis of neurological
pathology. Pipelines are computationally heavier on whole-brain microscopy than non-invasive neuroimag-
ing due to the additional steps handling exponentially increased data scale and profiling fundamental
structures across the entire neural system, e.g., neuron (30) and blood vessel (25). These technological
developments enable quantitative assessment of neuronal morphology, synaptic connectivity, and vascular
distributions with spatial precision previously unattainable through in vivo neuroimaging.
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Figure 1

AT for neurological diseases based on non-invasive neuroimaging and teravoxel imaging. (a) Three data modalities
of Al for in vivo neuroimaging, adapted from (I7). (b) Two example preprocessing steps for non-invasive
neuroimaging to generate multimodal data, adapted from (I7)). (¢) Convolutional Neural Networks (CNN) for
volume modality, adapted from (I7). (d) Graph Neural Networks (GNN) for connectivity modality, adapted from
(B31). (e) The teravoxel imaging, where yellow arrows indicate the preprocessing step of 3D reconstruction, is
adapted from (32)).

Table 1 Comparison of signal-to-noise ratio (SNR) definitions across neuroimaging modalities.

Modality MRI PET CcT LSFM
_ mean(Signal in ROI) mean(Lesion) —mean(Background) mean(Signal)
SNR= std%Noise) (33) std(Background) £ (34) std(Noigse) (35) § (36)

Note. ROI = region of interest; p and o represent the mean and standard deviation of voxel intensities
in LSFM images, respectively.

2.1. Limited Resolution and SNR of in vivo Neuroimaging

Non-invasive neuroimaging modalities, including MRI, positron emission tomography (PET), and computed
tomography (CT), present inherent constraints in spatial resolution and signal-to-noise ratio (SNR) that
can limit their ability to comprehensively characterize neurological disease (37, [38). The quantitative
definitions of SNR for representative neuroimaging and microscopy modalities are summarized in Table
where non-invasive methods average signals among regions of interest. These techniques generally achieve
resolutions ranging from millimeters to centimeters (39), which are coarser than the sizes of individual
neurons (10~100xm soma) or synapses (1~2um), resulting in that MRI/PET/CT cannot directly resolve

2Conducted on November 7, 2025, using the searching string ‘(TCGA[Title/Abstract]) AND
(brain[Title/Abstract])’ on page https://pubmed.ncbi.nlm.nih.gov/
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cellular or synaptic detail. For example, diffusion tensor imaging (DTI) might not show subtle preclinical
neuronal loss (40).

Machine learning approaches applied to non-invasive neuroimaging data must contend with fundamental
physical constraints such as limited resolution and low signal-to-noise ratio (SNR), necessitating standard-
ized preprocessing and feature extraction pipelines to extract biologically meaningful signals from noisy
measurements (12} [41)). These preprocessing steps, including denoising, head-motion correction, tissue seg-
mentation, and regional averaging (Fig. ), are widely adopted in studies and form the foundation for
downstream machine learning analyzes. They typically produce standardized data representations, i.e.,
volumetric, surface, or connectivity forms (Fig. ), upon which specialized models such as convolutional
neural networks (CNNs) and graph neural networks (GNNs) are built (Fig. [Ik-d). These representations
enable quantitative characterization of regional tissue properties while maintaining anatomical correspon-
dence with a predefined atlas (42).

Building on these standardized data representations, recent advances have leveraged Al-driven multi-
modal frameworks to partially overcome the limitations imposed by resolution and SNR. By integrating
complementary information from multiple non-invasive modalities, multimodal frameworks enhance sen-
sitivity to early disease-related changes that are imperceptible in single-modality analyzes (43]). Notable
applications include the early detection of neurodegenerative disorders, where multimodal methods achieve
diagnostic accuracy exceeding 90% for Alzheimer’s disease by combining MRI and PET (44)), and improved
modeling of structure-function relationships in the human brain (16} [I7). On the other hand, graph neural
networks (GNNs) have emerged as powerful tools to mitigate the analytical impact of limited resolution
and SNR by modeling geometry and connectivity patterns rather than individual voxels from neuroimaging
(45] [46)). As illustrated in Fig. , GNNs propagate information through the structural or functional geom-
etry of the brain to capture complex topological dependencies within brain networks. Thereby, it enhances
robustness to voxel-wise noise (47) and enables the detection of subtle connectivity disruptions that may
be undetectable using conventional statistical or non-learnable methods (48). Recent attention-based GNN
variants further improve diagnostic precision in psychiatric disorders such as depression and schizophrenia
(49, [50).

However, the underlying resolution limitations of non-invasive neuroimaging modalities may continue
to constrain the capacity of even the most advanced Al architectures to provide cellular-level insights that
could be essential for understanding the mechanisms of neurological disease mechanisms (51). Although
computational approaches can extract maximum information from available data, the fundamental physical
constraints of these in vivo techniques establish an upper bound on the biological detail accessible through
image analysis.

2.2. Whole-Brain LSFM: Gold Standard Data

Light-sheet fluorescence microscopy (LSFM) represents a shift in neuroscience imaging, providing unprece-
dented access to the cellular architecture with subcellular resolution (Fig. [Lg) across entire organ systems,
e.g., the brains of zebrafish (52)) and mouse (53). This advanced optical technique, cooperating with tissue
clearing, generates teravoxel-scale datasets (>1012 voxels per brain volume) that capture neuronal morphol-
ogy, connectivity patterns, and vascular distributions with spatial resolutions approaching sub-micrometer,
superior to non-invasive neuroimaging approaches (54, [55). Fig. [lp shows an example of a whole-brain
imaging of a mouse adapted from the paper (32). Tiling of the entire brain is necessary when the specimen
is large, as indicated by multiple stacks in Fig. , leading to a stitching step for neighboring tiles as yellow
arrows to reconstruct the complete 3D specimen.

The fundamental advantage of LSFM lies in its ability to illuminate thin optical sections (1~5 pm
thickness) through the sample using light sheets, thus minimizing phototoxicity and photobleaching while

www. annualreviews.org » Teravozel Microscopy Image Analysis for Neurological Diseases 5



6

maintaining high-speed acquisition capabilities (1~10 Hz volume rates) (56, [53] [57), compared to days for
confocal microscopy (58)). This approach enables comprehensive 3D reconstruction of entire brain volumes
(up to 1 cmS), preserving spatial relationships between diverse cell populations and their associated patho-
logical features (59). For neurological disease research, LSFM datasets provide direct access to pathological
protein aggregates (e.g., amyloid plaques and neurofibrillary tangles (60))), synaptic alterations (61)), cellular
degeneration (30), and vascular morphology patterns (25)) that remain invisible to conventional imaging
modalities (62} 63).

The high resolution, e.g., 450nm laterally and 2um axially (52)), and high SNR, e.g., 1000:1 (53),
characteristics of the LSFM data establish these datasets as gold standard references for understanding the
progression of neurological disease (64} [65]). Unlike in vivo analysis that relies on indirect measurements of
brain function or structure through hemodynamic responses or tissue contrast, LSFM provides direct access
to cellular and molecular-level pathology (58]). This capability proves particularly valuable for investigating
neurodegenerative diseases, where understanding the spatial distribution and temporal evolution of protein
misfolding, neuroinflammation, and synaptic loss is crucial for the development of targeted therapeutic
strategies (66l [67]).

2.3. Al-based Analysis Profiles Whole-Brain Morphology

The analysis of these enormous LSFM volumetric images has been revolutionized by deep learning. Modern
pipelines use CNNs and related architectures to automatically segment and quantify cellular, subcellular,
or vascular structures throughout the brain (68} [69). For example, 3D U-Net (70) has been applied to zebra
fish neuron (68) and mouse vasculature data (25) based on LSFM images.

Deep learning (DL) approaches excel at identifying subtle morphological alterations in neuronal popula-
tions that can indicate early pathological changes in neurological diseases (71). Early studies like BigNeuron
(72) and DeepNeuron (73) can automatically segment neurons, dendrites, and axonal projections across
entire brain regions with a precision matching human expert annotations (Dice coefficients >0.9), enabling
statistical analysis of cellular morphometric parameters including soma volume, dendritic branching com-
plexity (Sholl analysis), spine density, and axonal integrity. Although these early results are patch-based,
such quantitative phenotyping capabilities are essential to understand how neurological diseases affect spe-
cific cellular populations and neural circuits (74).

The computational efficiency and patch result stitching of this teravoxel image analysis task are a pivotal
factor in the feasibility of whole-brain profiling. Although human equivalent performance is observed in
recognizing cropped image patches, reconstructing the cropped results as a whole brain is a necessary step.
Studies transfer the problems as voxel-wise prediction and grouping so that the computation time ranges
from hours to days per brain, and the patch-based results can be concatenated as the whole brain directly
(30L [75). As a result, cell count and vessel size can be quantified in the brain (30, 25).

Aside from the automatic algorithms, manual annotations are the basis for data-driven AI. The inter-
active frameworks, such as ilastik (76) and segmentor (77), provide multiple annotation modes to facilitate
a wide range of applications, from voxel-wise annotation to 3D object tracking. Advanced self-supervised
and contrastive learning methods are also being incorporated to reduce annotation needs in LSFM. Tech-
niques like a simple framework for contrastive learning (78) or masked autoencoders (79) allow networks to
pre-train on unlabeled brain images and then fine-tune on limited hand-annotated samples. This reduces
the manual labeling burden (50-80%) while maintaining accuracy (69). Advanced annotation tasks such as
manual stitching are challenging in LSFM because of imaging uncertainties arising from environmental and
experimental factors (80). For example, movement and vibration of the imaging device, refractive-index
heterogeneity, uneven illumination of the light sheet, and variability in tissue clearing can reduce registra-
tion accuracy and complicate manual alignment. Software for stitching purposes, e.g., TeraStitcher (8T))
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and Imaris (82), is rare but has been developed to fulfill the needs of interactively visualizing the teravoxel
image with the function of shifting 3D tile images for manual stitching.

3. THE EVOLUTION OF TERAVOXEL IMAGE ANALYSIS

The integration of deep learning methodologies with teravoxel LSFM datasets has refreshed our capacity
to extract quantitative insights from complex neurobiological structures across multiple resolution scales
(54, 83). Whole-brain computational frameworks enable comprehensive profiling of vascular networks,
cellular populations, and subcellular components through automated analysis pipelines that process whole-
brain imaging volumes with precision and throughput (59, [84). The evolution of such huge volumetric data
analysis starts from smaller sizes and fewer data, namely, gigapixel whole-slide images (Fig. ), before the
computational hardware is capable of the scale of teravoxel. Although pipelines for 3D teravoxel images
analysis (Fig. ) differ from 2D (Fig. )7 computer vision (CV, which refers broadly to computational
approaches for automated image analysis, encompassing both traditional image-processing techniques and
modern deep learning-based methods) tasks are as same as 2D (Fig. [2fgh) for local patches in 3D (Fig. [2}j).
In this section, the evolution of teravoxel microscopy image analysis for neurological diseases is reviewed
from where it started to the state-of-the-art (SOTA) pipelines.

3.1. Early Neurological Studies for Gigapixel Microscopy Image Analysis

The foundational trajectory of large-scale biological image analysis originated from pioneering developments
in bright field microscopy (BFM) imaging systems, establishing the computational precedent for whole-slide
imaging applications of images larger than megapixel natural images (87, [88). Early work in computational
pathology applied automated analysis to tissue microarrays (TMA), which consist of arrays of megapixel
microscopy images (89). The analysis represents antecedents of modern cell-detection methods applied
to large bright-field microscopy (BFM) images (e.g., 3000 x 3000 pixels), substantially larger than typical
natural-image datasets.

As shown in Fig. bcd, although LSFM existed as dark-field microscopy more than 100 years ago,
cell profiling became feasible for BFM gigapixel imaging earlier than LSFM imaging when computers were
equipped with gigabytes of memory. Aperio’s BigTIFF-enabled scanners first supported gigapixel slide
imaging in a practical and production-grade setting in 2007. As semi-supervised learning (90) and unsuper-
vised learning (91) for pathology images have not been presented, computer vision (CV) tasks for pathology
images were focused on local patches with manual annotations instead of the entire gigapixel image. The
methods for image classification (Fig. ), object detection (Fig. ), and instance segmentation (Fig.
) have evolved from handcrafted feature-extraction approaches (92} [93) to modern DL-based methods
(94, [95) for accurate local patch recognition.

As computational efficiency grows in the deep learning era, CNN was adapted to a complete gigapixel
whole slide image (WSI) analysis in 2016 (96]) for the GBM prediction of WSIs in the TCGA dataset. This
brings a general pipeline (Fig. ) in 2D WSI analysis by acting like pathologists, (i) finding diseased local
patches, then (ii) summarizing reports or labeling based on detected patches (97, [O8]). Subsequently, tile-
based decomposition strategies divided large gigapixel-scale brain sections into smaller, more manageable
subregions, which maintained spatial continuity by using predefined overlapping boundary regions (99).

Following these CV and gigapixel advances in 2D, deep learning algorithms constituted the core ana-
Iytical component. Taupathologies are the main focus of gigapixel image analysis for neurological diseases.
For example, in patch-level recognition, (I00) implemented residual network (ResNet) (L0I) based pyra-
mid scene parsing networks (I02) for pTau and pTDP-43 segmentation, where the model demonstrated
intersection over union (IoU) exceeding 60%. Similarly, a fully convolutional network is applied by (103)
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The typical workflows of teravoxel image analysis for neurology. (a) Brain section mounted on the glass, generated
from CCFv3 atlas (85). (b) The specimen of a mouse brain, generated from CCFv3 atlas (85). (c) Gigapixel whole
slide image (WSI), which is assembled from 2D tiles, generated from CCFv3 atlas (85). (d) Teravoxel whole brain
LSFM image, which is assembled from 3D tiles, generated from CCFv3 volume (85). (e) An example of the
preprocessing step, stitching, adapted from (86). 2D Computer Vision (CV) tasks have (f) pixel grouping, (g)
object detection, and (h) instance segmentation. 3D CV tasks have (i) cell counting and (j) instance segmentation,
adapted from (30) and (32)), respectively. (k) Cell colocalization from multiple fluorescence channels. (1) 2D WSI
analysis pipeline. (m) 3D teravoxel image analysis pipeline, the whole brain map is adapted from (32]).
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for tauopathy detection, achieving a 77-90% true positive ratio. Not long after, (I04) utilized the pre-
trained ResNet as a feature extractor to train a multilayer perceptron (MLP) for AD classification from
tau immunostained WSI.

Although studies added more components to improve interpretability in local patch selection (911 [105]),
the principle of WSI analysis is still to conclude a result based on smaller regions of interest (Rol) from
the brain section that is sliced off the whole brain. Given that the WSI is already a partial brain, selected
patches or objects are hard to grab systematic whole-brain features for studying neuropathology. In the
opposite, neurological diseases care about biomarkers and morphology across the intact brain to cover all
interesting regions (104}, [106). As the qualitative evidence of neuropathology present in an early BFM
imaging study of AD (I07), we can observe that neurological biomarkers are distributed across the whole
brain. This urges the analysis of a teravoxel microscopy image of the whole brain.

3.2. Improvements to Microscopy Image Analysis Towards Teravoxel

The evolution from gigapixel whole-slide imaging to teravoxel volumetric analysis necessitates algorithmic
frameworks capable of processing large-scale images that exceed the computational boundaries of gigapixel
images by several orders of magnitude. This emerging field has different imaging workflows using LSFM
rather than BFM, where specimen preparation (Fig. ) utilizing tissue clearing protocols and biomarker
fluorescence precedes acquisition of intact tissue volume. Consequently, the computational infrastructure
required to process these volumetric images has evolved from gigabyte memory architectures to terabyte
memory due to vast interesting objects showing up in a 3D form with a clearer contrast between background
and fluorescence excitation, as well as the elevated scale of voxel amount (108, [109]).

The transformation from 2D WSI analysis to 3D volume analysis does not mirror the methodological
evolution depicted in BFM imaging workflows, where teravoxel data (Fig. ) undergo additional stitching
procedures (Fig. ) to generate an intact whole brain in 3D. Furthermore, colocalization is required for
LSFM using multiple fluorescence channels to classify different cellular or molecular objects, e.g., upper-layer
and lower-layer neurons (red and cyan colors in Fig. ) However, computational architectures specifically
designed for 3D image analysis in the CV field have rarely been designed for the LSFM modality and the
teravoxel scale.

The 3D CV objectives (Fig. j) are a direct extension of the 2D CV tasks (Fig. [2gh) in most cases.
Segmentation in 3D CV (Fig. )7 for example, was first proposed by (II0) for the confocal fluorescence
microscopy image in 2007. This fully automated method for segmenting 3D cell nuclei is specifically de-
signed to handle closely touching nuclei through gradient flow tracking. This is a direct extension and
enhancement of traditional 2D segmentation. The method demonstrates quantitative performance with
both over-segmentation and under-segmentation percentages around 5%, while achieving volume overlap
exceeding 90% compared to expert manual segmentation, validated across synthesized and real 3D biolog-
ical images, including Caenorhabditis elegans embryos and zebrafish nuclei. Subsequently, deep learning
approaches U-Net (111)) and its 3D variants (70, [68) have demonstrated exceptional performance in seg-
menting cellular populations and vascular networks within teravoxel brain volumetric images, achieving
3D IoU scores that exceed 85% for neuronal soma detection and 78% for vascular structure delineation
(111l ©5). Advanced attention mechanisms and transformer-based architectures have been integrated into
these frameworks to capture long-range spatial dependencies that are particularly relevant to analyze dis-
tributed pathological patterns across entire brain hemispheres (I112| [113)). Recently, a work found that 3D
cell segmentation extended directly from 2D is not robust for anisotropic resolution in whole brain LSFM
(32). A novel 2D-to-3D manner is proposed with more robustness and efficiency. However, these 3D CV
methodologies have not been scaled to a teravoxel whole-brain image.

The comprehensive 3D teravoxel analysis pipeline represents a shift from the extraction of Rol in 2D
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(Fig. ) to whole brain profiling for statistical analysis (Fig. ), as intact tissue is imaged by LSFM
rather than a brain section by BFM. Thus, the robustness of preprocessing and the high throughput of
3D CV algorithms are driving factors for trustworthy, efficient whole-brain profiling and consequent new
neuropathological analysis. Although the entire cellular organization of cleared tissues can be rapidly
imaged using LSFM at acquisition rates 2 to 3 orders of magnitude faster than point scanning systems
(54l 55)), day-long scanning in mammalian brains with large volume leads to challenging preprocessing of
volumetric image stitching (Fig. ) The stitching problem is rooted in the fundamental trade-off between
the limited size of the field of view (FOV) and the high resolution of microscopy. Achieving cellular-level
detail across an entire mouse brain requires acquisition strategies by partitioning the imaging volume into
manageable segments and slices. Consequently, challenging registration between 3D segments is represented
by the various movements (AX vs. Z in Fig. ) across different slices due to the long scanning time.

3.3. 3D Reconstruction: Stitching

The earliest implementations of LSFM stitching relied heavily on manual alignment procedures, reflecting
the limited computational infrastructure and algorithmic sophistication available during the initial develop-
ment of light sheet microscopy systems. These pioneering approaches required extensive user intervention
to specify correspondence points between overlapping image regions, typically employing simple translation
models to achieve basic tile alignment. The computational demands of these early methods were substantial,
often requiring days or weeks of processing time for even modest whole-brain datasets (114).

The TrakEM2 software package represented one of the first comprehensive and semi-automated solutions
for large-scale image stitching (114). This system implemented manual registration capabilities that allowed
researchers to specify correspondence points between adjacent tiles, applying rigid transformation models
(I15) to achieve initial alignment. The approach utilized interactive visualization tools to enable precise
manual positioning of image tiles, although the process remained extremely time-intensive for large datasets.

Early automated approaches began to incorporate cross-correlation techniques to identify optimal align-
ment parameters between overlapping image regions (116). These methods computed normalized cross-
correlation coefficients across predefined search windows, identifying translation offsets that maximized
correlation between adjacent tiles. While representing a significant advancement over purely manual ap-
proaches, these early correlation-based methods struggled with illumination variations and geometric dis-
tortions characteristic of LSFM acquisitions (T17, [118).

The introduction of phase correlation techniques (I119) marked a significant advancement in LSFM
stitching methodologies (120} [81)), leveraging frequency domain representations to achieve more robust and
efficient alignment. These approaches exploited the Fourier shift theorem to compute translation param-
eters directly from the phase information of overlapping image regions, providing improved accuracy and
computational efficiency compared to spatial domain methods. Preibisch introduced the globally optimal
stitching framework, implementing phase correlation for pairwise shift estimation coupled with global op-
timization algorithms to minimize accumulated registration errors (120). As a representative of the phase
correlation-based method, this approach indicates another fundamental shift from sequential alignment
procedures to global optimization strategies that consider the entire tile configuration simultaneously. The
method demonstrated significant improvements in registration accuracy, particularly for large tile arrays
where accumulated errors could become substantial. The Scale-Invariant Feature Transform (SIFT) al-
gorithm (121)), afterward, was integrated into the stitching pipelines, providing enhanced robustness to
illumination variations and geometric distortions. Such hybrid approaches combined the computational
efficiency of phase correlation with the geometric robustness of feature-based matching, allowing for more
accurate alignment of tiles exhibiting significant photometric differences (I15). The incorporation of SIFT
features also facilitated the detection and correction of systematic geometric distortions inherent to LSFM
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optical systems (122).

TeraStitcher (81)), based on phase correlation, represents a significant advancement in high-performance
computing solutions for large-scale LSFM stitching. The key innovation is the multi-level parallelization
strategy, which exploits both thread-level and process-level parallelism, enabling efficient distribution of
computational workload across multiple processing cores and nodes (123]). This design significantly reduces
processing time for large datasets while maintaining registration accuracy within 1-2 pixels for typical
applications. The system utilized hierarchical data structures and optimized Input/Output (I/O) operations
to achieve efficient processing of massive tile arrays while maintaining sub-pixel registration accuracy and
minimal memory usage (<8GB).

Advanced stitching frameworks began to incorporate elastic registration techniques to account for tissue
deformation and non-rigid distortions that occur during specimen preparation and imaging (124). The
method implemented deformation models that could capture local tissue movements while maintaining
global geometric coherence. This results in substantial computational resources along with significant
improvements in registration accuracy for large and deformable specimens.

The BigStitcher platform represented a major advancement in scalable LSFM stitching, specifically
designed to handle the massive datasets characteristic of whole brain imaging protocols (125)). This system
integrated advanced memory management strategies, distributed computing capabilities, and optimized
algorithms to enable the processing of teravoxel-scale images (126). The platform implemented multiple
registration algorithms, including phase correlation, Lucas-Kanade optimization, and interest point-based
approaches, providing users with flexible options for interactive stitching.

The WobblyStitcher algorithm, integrated within the ClearMap2 software suite, introduced novel ap-
proaches for handling non-rigid deformations and geometric distortions commonly encountered in tissue
clearing protocols (I27). This method implemented advanced elastic registration techniques combined with
robust outlier detection mechanisms to achieve accurate alignment of tiles exhibiting significant geometric
variations (86). The algorithm demonstrated particular effectiveness in processing specimens that had un-
dergone extensive tissue clearing procedures, where conventional rigid registration approaches often failed
due to tissue deformation and optical distortions (128]).

The modern ImarisStitcher system, developed by Bitplane, provided a comprehensive commercial solu-
tion for LSFM stitching with an emphasis on user-friendly interfaces and integrated visualization capabilities
(I29). This platform implemented multiple registration algorithms, including phase correlation, feature-
based matching, and hybrid approaches, enabling users to select optimal methods based on the interactive
ImarisViewer (130). The user-friendly graphic user interface (GUI) and the capability of dragging tile
images in all dimensions facilitate user validation and refinement of stitching results.

3.4. Multiple Fluorescences: Colocalization

Modern LSFM systems can acquire volumetric images of entire mouse brains in hours, generating datasets
containing billions of voxels in multiple fluorescence channels (I31)). The analysis of spatial relationships
between different molecular markers within these teravoxel images requires efficient computing that can han-
dle the unique challenges posed by cleared brain tissue imaging, including non-uniform signal distribution
(132) and tissue deformation artifacts (I33).

The foundation of quantitative colocalization analysis was established through the adaptation of Pear-
son’s correlation coefficient (PCC) to confocal fluorescence microscopy prior to LSEM (134). This method
evaluates the linear relationship between pixel intensities across two channels by calculating the correla-
tion coefficient between the corresponding pixels in dual-channel images. The PCC approach was initially
developed for confocal microscopy applications but was subsequently adapted for LSFM as the technology
matured in the early 2000s (I35). Despite its widespread adoption, PCC analysis demonstrated significant
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limitations when applied to LSFM data, particularly in the presence of background fluorescence and when
analyzing sparse cellular populations typical of whole-brain imaging. Building upon the PCC foundation,
Mander’s coefficients were developed to quantify the proportion of fluorescence in one channel that over-
laps with fluorescence in a second channel (136). These coefficients address some limitations of PCC by
providing asymmetric measures of colocalization, enabling researchers to determine whether marker A is
contained within regions positive for marker B, and vice versa. The Manders coefficients became partic-
ularly relevant for LSFM applications where cellular markers might show different expression patterns or
labeling efficiencies for the same cell across brain regions (54)).

By standing on the shoulders of these foundation works, the evolution of colocalization methods for
LSFM whole-brain imaging has progressed through distinct methodological phases over the past two
decades. Before 2010, the cell colocalization between channels was intensity-based. The Intensity Cor-
relation Analysis (ICA) method addressed the limitations of traditional correlation coefficients in distin-
guishing between dependent and independent fluorescence distributions (I37). The ICA approach calculates
the product of the differences from the mean (PDM) for each pixel pair, providing a more sensitive mea-
sure of pixel-wise correlation than traditional PCC methods. This technique proved particularly valuable
for LSFM applications where weak colocalization signals might be masked by background fluorescence or
where spatial heterogeneity in marker expression complicates analysis (138). The ICA method’s ability to
detect subtle correlations made it especially useful as an ImageJ plugin (I39) for whole-brain LSFM. The
automated thresholding approach objectively determines appropriate intensity thresholds for colocalization
analysis without user bias (I40). The method iteratively calculates PCC values for different threshold com-
binations and selects thresholds that maximize the correlation while maintaining statistical significance.
This approach addressed a critical limitation in LSFM colocalization analysis, where manual threshold
selection could introduce systematic bias across different brain regions or experimental conditions. The
automated thresholding method became essential for processing large-scale LSFM datasets where manual
threshold optimization for hundreds of brain regions would be impractical.

The 2010s witnessed the emergence of recognition-related methodologies, where traditional pixel-based
methods could produce mistakes for objects of interest. They led to the development of object-based
colocalization analysis approaches (141). These methods first segment individual cellular structures or
molecular compounds for every channel, then the colocalization is produced between segmentation masks
rather than pixel-wise intensities. This approach proved particularly valuable for LSFM applications in
which cellular boundaries and subcellular structures can be clearly resolved (142). It reduces false positive
cell colocalization that can arise from background fluorescence, since only objects of interest are segmented,
and provides more neuroanatomy-related measures of spatial association between cellular objects. Build-
ing on object-based segmentation, distance-based colocalization methods quantify the spatial separation
between identified objects to determine whether they are truly colocalized or merely adjacent (I43]). These
approaches calculate minimum distances between object boundaries and apply statistical tests to deter-
mine whether observed distances are significantly different from random distributions. The distance-based
analysis became crucial for LSFM applications where the high resolution might cause distinct but adjacent
structures within the same cell to appear colocalized (144). The method’s ability to account for the 3D
nature of LSFM data made it particularly well-suited for whole-brain analysis where cellular structures
extend across multiple Z-planes.

Afterward, the development of standardized brain atlases, particularly the Allen Common Coordinate
Framework version 3 (CCFv3), enabled systematic registration of LSFM datasets in common reference
spaces (85)). A branch of studies (145, [146]) reformulated the colocalization as a registration problem
of aligning multichannel LSFM images to a common space of the annotated brain atlas. The method
addresses challenges specific to LSFM imaging, including tissue deformation artifacts introduced by clearing
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procedures and non-uniform signal distribution across multiple channels (147). Atlas registration not only
advanced cell colocalization, but it also became essential for comparative studies and meta-analyzes of
whole-brain LSFM datasets, providing standardized coordinate systems for quantifying spatial relationships
between molecular markers, since it has been involved in the teravoxel analysis pipeline (Fig. )

Deep learning-based colocalizations, such as (48], [149)), provide supervised learning solutions for the
common problem of diverse SNR among different channels of LSFM based on a convolutional long short-term
memory (LSTM) neural network. The adaptive nature of these algorithms enables more robust analysis
across different tissue-clearing methods, imaging conditions, and marker combinations, leading to teravoxel
analysis of multiple cell types.

4. EMERGING APPLICATIONS OF TERAVOXEL MICROSCOPY IMAGE ANALYSIS FOR
NEUROLOGY

The most recent applications of teravoxel microscopy image analysis for neurological diseases focus on the
whole mouse brain vascular and neuronal system. Various SOTA teravoxel analysis pipelines in related
studies were framed similarly as in Fig. after the teravoxel image reconstruction. Different concerns
have been explored on the feasibility of AI methodologies (150), the special properties of LSFM (such as
anisotropic resolution (31))), and the efficiency of teravoxel computation (30). Considering this, the differ-
ences between applications can be summarized as predictive methodologies, objects of interest, and result
reconstructions. Every application is a computing stream of small local patches fed into a local operator,
which is illustrated in the workflow: (i) Reconstructing teravoxel input (Fig. [3R), (ii) two computation
categories for every local patch (Fig. d), and (iii) the whole-brain statistics for the neurological outcome
based on whole-brain profiles at the cellular level (Fig. fgh).

3D Neural Network (NN) pipeline (Fig. [Bt) and 2D NN pipeline (Fig. [B) have demonstrated shared
objectives and diverse computational efficiency (Fig. ) The 3D NN pipeline incorporates advanced
methodologies spanning from watershed-based segmentation techniques (15I)) through 3D CNN (152)) to
the 3D Vision Transformer (ViT) architectures (I53]), demonstrating whole-brain profiling by vessel seg-
mentation (25), and voxel-wise (69, [150)) and patch-wise (154) nuclei classification tasks. In contrast, the
2D pipeline leverages U-Net architectures (I1I]) and a hybrid 2D CNN + GNN framework (32) for efficient
nuclei detection and colocalization (30), and instance segmentation (32) across volumetric datasets. These
state-of-the-art teravoxel microscopy image analysis applications are reviewed in this section regarding their
pros and cons using a 3D or 2D pipeline.

4.1. 3D NN based Pipeline

The development of 3D NN architectures has fundamentally extended patch-based 3D CV methodologies to
teravoxel image analysis, enabling direct tera-level voxel-wise prediction of cellular and vascular structure
(Fig. g). Early watershed-based segmentation approaches provided automated quantitative analysis of
dense objects, establishing an earlier framework that detects nuclei in the whole mouse brain (150). Multiple
Cre mice were used for cell segmenting and counting in each region, as well as fiber tract segmentation, to
map the rabies-EGFP process in the whole mouse brain.

The 3D U-net was also scaled up to teravoxel, indicating a significant advancement in computational
efficiency and analytical precision. (25)) developed a machine learning framework specifically designed for
whole mouse brain vasculature mapping (vessel map in Fig. [3g), demonstrating how 3D CNN architectures
could effectively capture complex vessel morphologies and network topologies across teravoxel datasets. The
reported evidence of secondary intracranial collateral vascularization in CD1 mice (longer vessel length in
Fig. [Bp) and reduced vascularization of the brainstem in comparison to the cerebrum revealed unbiased and
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Existing applications of teravoxel image analysis can be categorized into two types, 3D and 2D approaches, after
(a) the whole-brain image is reconstructed (tile stitching and channel alignment between chl to chX). They are
differentiated by 3D and 2D operators, respectively, resulting in (b) runtimes of 2D approaches are consistently
faster than 3D, with lower than 104 seconds for teravoxel whole-brain images. (c) 3D operators in existing
applications include watershed (I50), 3D CNN (25| [I54), and 3D ViT (69) for (e) vessel segmentation (25) and (g)
nuclei voxel grouping (69) from volumetric inputs, where vessel and nuclei plots are adapted from corresponding
literature, respectively. On the other hand, (d) 2D operators include Unet, CNN, and GNN, (f) predict nuclei
locations (30) and (h) reconstruct instance segmentation (32)) in 3D from 2D patches, respectively, where cell count
and morphology plots are adapted from corresponding literature. Although whole-brain studies differ from
computational approaches, the whole-brain profiles of 3D cellular biomarkers brought novel associations between
(e) vessel length and brain region (GU: Gustatory areas; AD: Anterodorsal nucleus), (f) counting across different
cell types (TP3: TO-PRO-3), (g) nuclei density and temperature of exposure, and (h) a to-be-announced (TBA)

whole-brain profile of nuclei Principal Axis (PA).
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scalable quantifications of the angioarchitecture of the mouse brain. This work established critical prece-
dents for automated vascular phenotyping and enabled systematic quantification of vascular parameters
that were previously inaccessible through conventional analysis methods.

Subsequent developments in deep learning methodologies further enhanced the precision of cellular
detection and segmentation capabilities. (I54)) introduced specialized algorithms for 3D cell detection in
whole mouse brain datasets, achieving >95% accuracy in local patch classification, whether there is a cell,
across various brain regions. Unlike voxel-wise prediction in previous works, patch-based (50><50><20,um3)
classification leads to high efficiency (91 mins/brain) with coarse cell detection. Their efficient pipeline
demonstrated that the algorithm cell counts are correlated with manual cell counts (>0.99) for large-scale
cellular phenotyping.

The utilization of 3D ViT architectures in 2025 represents the latest evolution in this teravoxel analysis
trajectory, offering an artificial intelligence-based cartography of ensembles (ACE) pipeline by enhanced
attention mechanisms (69). It enabled unbiased mapping of local neuronal activity and connectivity. It
demonstrated superior segmentation accuracy, advanced by uncertainty mapping and Monte Carlo dropout.
The statistical analysis between mice acclimated in different temperatures quantitatively measured c-Fos
immunolabeled cells (nuclei density in Fig. ) under different environmental stimuli.

4.2. 2D NN based Pipeline

The 2D CNN is more efficient than the 3D CNN as exemplified in Fig. [Bp since it uses 2D filters. The
computation of data with a teravoxel scale can be done in hours by 2D methods, while 3D methods can take
days. Therefore, several recent studies have a 2D-t0-3D methodology in their pipeline to increase efficiency
(30) and to address anisotropic resolution as well (32).

The differences in the 2D pipeline (Fig. [3d) are (i) computing 2D slices with higher resolution, and (ii)
reconstructing 2D results to 3D along the low-resolution axis. NuMorph (30) was proposed to predict nuclei
as dots (nuclei cloud in Fig. ) for cell counting across multiple fluorescence channels. Based on a threshold-
based colocalization algorithm, total cell counts and spatial correlation among different stained cell types are
statistically compared between wild-type mice and gene-modified mice, demonstrating quantitative results
of neuron overgrowth since the cell counts in the isocortex region of gene-modified mice are increasing.

The anisotropic resolution was reported as a defect for 3D volumetric segmentation (32)), causing in-
accurate (<80%) instance segmentation by 3D CNN. 2D CNN was used in this work, incorporated with a
GNN-based 2D-to-3D approach to group the 2D segmentation masks as a complete 3D prediction. This at-
tempt first presents whole-brain instance segmentation, enabling cellular morphology mapping in teravoxel
image analysis (nuclei volume map in Fig. )

4.3. Future Directions

4.3.1. Cell Morphology Whole-Brain Profiling The development of morphological characterization of cells
and neurons represents a fundamental advancement in quantitative neuroanatomy. Current analytical
pipelines primarily focus on basic geometric parameters such as location, density, and size measurements
of cells and vessels, yet the complex 3D morphology of nuclear and neuron populations demands more
approaches. As 3D robust nuclei instance segmentation demonstrated in whole brain LSFM (32), future
computational frameworks could integrate advanced shape descriptors, including spherical harmonic de-
composition (I55), and principal axis measures (morphological profiles in Fig. ) to capture nuanced
morphological variations that characterize different cellular phenotypes and pathological states.
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4.3.2. Error-Resistant Teravoxel Image Analysis Pipeline Although statistical results as new biomarkers,
e.g., vascular measurements (25)), provided new neurological insights for brain disorder early diagnosis,
complex preprocessing steps (Fig. k) can cause errors accumulated in statistical results. Since 3D and
2D-based pipelines consume most of the time for computation after teravoxel image preprocessing (104
seconds in Fig. ), the redo of data analysis will double the time cost to correct preprocessing errors,
where small errors in teravoxel-scale data are hard to find yet fatal for the conclusion. An error-resistant
pipeline can be formed by (i) analyzing raw data before the reconstruction of teravoxel volumetric image,
and (ii) calculating the transformation parameters of raw data, which can be applied later on to analytical
results as needed.

4.3.3. Cellular Pathology and Morphology Coupling An investigation (I56) represented an innovative mul-
timodal platform integrating LSFM with 18F-flutemetamol PET and MRI to establish quantitative 3D
correlations between (-amyloid pathology in ocular and cerebral tissues. Although the proposed method
reconstructed A, microglia, and astrocytes from LSFM to a 3D surface instead of a teravoxel image,
this study demonstrated a significant difference (p <0.001) between the amyloid plaque surface volume of
AD and control groups. The PET standardized uptake value ratios (SUVRs) with weaker statistics, non-
significant between AD and control (p =0.167), established the first quantitative evidence of multimodal
analysis of pathological and morphological features in cellular resolution across the whole brain surface.
This potential proved that emerging longitudinal multimodal studies for coupling cellular pathology and
morphology can further advance our understanding of neurological diseases with the gold standard datasets.

These improvements will allow us to better understand neurological disease processes. They will link
cellular pathology with systems-level phenotypes, which have long hindered our understanding of complex
neurobiological disorders.

5. CONCLUSIONS

The emergence of light sheet fluorescence microscopy (LSFM) coupled with artificial intelligence-driven
analysis represents a paradigm-shifting transformation in neurological disease research, fundamentally sur-
passing the resolution and specificity limitations inherent to non-invasive neuroimaging modalities. This
convergence has enabled unprecedented access to cellular-level structural details in intact brain tissue, gen-
erating a teravoxel image that captures neuronal morphology, vascular networks, and pathological protein
distributions with subcellular precision. The evolution from gigapixel whole-slide imaging to comprehen-
sive 3D volumetric analysis has necessitated efficient and robust computational frameworks capable of
preprocessing, detecting, and segmenting objects of interest, where the data scale exceeds non-invasive
neuroimaging by several orders of magnitude.

Teravoxel analysis pipelines have demonstrated both 3D and 2D neural network-based methodologies,
each offering distinct computational trade-offs between precision and efficiency. The implementation of
advanced deep learning methodologies, ranging from 3D U-Net, ViT architectures for vascular mapping,
to hybrid 2D CNN-GNN frameworks for nuclei instance segmentation, has enabled systematic character-
ization of cellular populations and morphological alterations previously inaccessible through non-invasive
neuroimaging. These computational advances have yielded quantitative insights into neuroinflammatory re-
sponses, neurodegenerative processes, and vascular pathology. Simultaneously, unique challenges of LSFM,
including non-rigid stitching and multichannel fluorescence, are considered. Methodological standards are
established for investigating neurological disease mechanisms at the cellular scale across the whole brain,
quantitatively.
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