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Abstract

Light sheet fluorescence microscopy (LSFM) has emerged as a revo-

lutionary imaging modality for investigating intact three-dimensional

brain structures at the teravoxel scale. In parallel, high-throughput

computational methods, especially deep learning approaches, have

opened new avenues for uncovering the pathophysiological mechanisms

of neurological diseases through LSFM technology. Recent advances in

optics and tissue clearing methods have allowed whole-brain imaging at

cellular resolution in three dimensions, and the integration of artificial

intelligence (AI) has facilitated the identification of disease-related cel-

lular profiles and morphological markers. Machine learning techniques

for stitching, segmentation, classification, super-resolution, and regis-

tration, therefore, are promoted to uncover biological patterns that are

not visible to human eyes, yet related to neuroinflammatory and neu-

rodegenerative diseases. However, analytic pipelines have been designed

differently for various animal models and brain structures, leading to

challenges in feasibility and compatibility within this emerging field of

data-driven LSFM image analysis. Here, we present an overview of

current pipelines, examine existing and forthcoming challenges as the

LSFM community advances, demonstrate their implications for neuro-

logical disease applications, and propose potential solutions.
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1. INTRODUCTION

As we enter the era of artificial intelligence (AI), AI for neurological diseases shows great potential for

computer-aided prognosis (1, 2), diagnosis (3), and therapeutics (4). The past decades have witnessed di-

verse neurological applications of AI and machine learning, focusing on magnetic resonance imaging (MRI),

electroencephalogram (EEG), transcriptomic, metabolomic, phenotypic data, and microscopy image anal-

ysis (5). In contrast, microscopy imaging techniques are not widely used for the investigation of early-stage

neurological diseases, as the acquisition of suitable brain tissue is invasive and carries a significant risk

(6). This is reflected by the large difference in publication numbers in neurology of 82 versus 2,420 on the

topic of microscopy and MRI for neurology, respectively1. However, microscopy reveals structural details

linked to neurological diseases, which non-invasive methods are struggling with in terms of resolution and

specificity. Investigating disease-related structural changes in the nervous system requires imaging hetero-

geneous structures at vascular, cellular, and subcellular scales across subject populations. For example,

alterations in the cerebrovascular system serve as a possible marker of Alzheimer’s disease (AD), as early

changes in blood vessels are directly associated with tau pathology (7).

The parallel development and maturation of public datasets have fueled the neurological analysis rev-

olution, providing access to longitudinal and multimodal data, including MRI, EEG, phenotypes, and

genotypes (8, 9, 10, 11). Diverse innovations in unified standards in the preprocessing of whole-brain data

(12, 13) attract interests in machine learning, e.g., large-scale modeling (14, 15) and structure-function

coupling (16, 17), for neurodegeneration. Nonetheless, microscopy is increasingly being adopted as an al-

ternative modality to satisfy the desire to see structural details in specific neurons. In early studies, cell

localization and structure segmentation within brain sections, e.g., detecting cells stained for the somato-

statin receptor based on confocal fluorescence microscopy (18), suggest new strategies for the treatment of

neurological and psychiatric disorders from microscopy. On the other hand, another modality, bright field

1Conducted on November 3, 2025, using searching strings ‘(MRI[Title/Abstract]) AND (neurol-
ogy[Title/Abstract])’ and ‘(microscopy[Title/Abstract]) AND (neurology[Title/Abstract])’ for MRI-related and
microscopy-related articles, respectively, on page https://pubmed.ncbi.nlm.nih.gov/
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microscopy images, has been curated and released as part of the Cancer Genome Atlas (TCGA) database

for the detection of glioblastoma multiforme (GBM) in brain sections (19). Although the quantity of brain

studies based on the TCGA dataset—1,343 articles in PubMed2—is growing, this type of microscopy image

analysis still studies a partial brain. The whole-brain analysis for neurological diseases is based on a new

modality.

Although light sheet fluorescence microscopy (LSFM) and three-dimensional (3D) tissue clearing were

present more than 100 years ago (20, 21), a guinea-pig cochlea was imaged by the first integration of tissue

clearing and LSFM after approximately 90 years (22). Brain LSFM was then present in the 2000s as a

breakthrough that enabled, for the first time, 3D cellular-level mapping of complete neuronal architectures

in intact mouse brains, marking a pivotal moment in whole-brain imaging (23). Afterward, initial attempts

of machine learning approaches that analyze whole-brain LSFM have been made on local structures, e.g.,

neuronal arbor segmentation (24). However, LSFM imaging of the whole brain introduces 104× more voxels

than non-invasive neuroimaging, adding challenges of stitching, visualization, and registration to machine

learning in such a teravoxel volumetric image for cell and structure profiling (25, 26). Although teravoxel

image analysis in the volume electron microscopy modality characterizes the ultrastructure of the brain,

including synapses (27) and axons (28), the existing study (28) for neurological diseases is based on 3D

gigavoxel images around local patches without scaling up to the whole brain. Therefore, in this review

of teravoxel microscopy image analysis for neurological diseases, the term ‘teravoxel’ specifically refers to

LSFM. Here, we explain the basic principle of teravoxel image analysis in the era of AI and its unique

benefits and challenges over non-invasive neuroimaging for neurological diseases. The evolution of teravoxel

microscopy image analysis is then reviewed, with a focus on profiling the entire mammalian brain. We then

discuss the promise of neurology studies powered by teravoxel image analysis based on whole-brain neuron

morphology on the cellular scale.

2. AI FOR NEUROLOGICAL DISEASES

The convergence of AI for neurological diseases represents a transformative paradigm in neuroscience.

Traditional computational approaches in neurology are based on preprocessing frameworks for in vivo

neuroimaging (Fig. 1a,b), allowing unprecedented characterization of disease-related alterations in regional

signal, averaged surface, and connectivity. Advanced deep learning frameworks, including convolutional

neural networks (Fig. 1c), and graph neural networks (Fig. 1d), have demonstrated remarkable capabilities

in neurological applications, such as brain-to-stimuli decoding (29) and human connectome analysis (17).

The integration of high-resolution imaging technologies with AI represents this shift toward large-scale

image analysis for neurological disease. LSFM generates teravoxel-scale datasets that capture cellular-level

detail across entire brain volumes (Fig. 1e), providing opportunities for AI-driven analysis of neurological

pathology. Pipelines are computationally heavier on whole-brain microscopy than non-invasive neuroimag-

ing due to the additional steps handling exponentially increased data scale and profiling fundamental

structures across the entire neural system, e.g., neuron (30) and blood vessel (25). These technological

developments enable quantitative assessment of neuronal morphology, synaptic connectivity, and vascular

distributions with spatial precision previously unattainable through in vivo neuroimaging.

www.annualreviews.org • Teravoxel Microscopy Image Analysis for Neurological Diseases 3
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Figure 1

AI for neurological diseases based on non-invasive neuroimaging and teravoxel imaging. (a) Three data modalities

of AI for in vivo neuroimaging, adapted from (17). (b) Two example preprocessing steps for non-invasive
neuroimaging to generate multimodal data, adapted from (17). (c) Convolutional Neural Networks (CNN) for

volume modality, adapted from (17). (d) Graph Neural Networks (GNN) for connectivity modality, adapted from

(31). (e) The teravoxel imaging, where yellow arrows indicate the preprocessing step of 3D reconstruction, is
adapted from (32).

Table 1 Comparison of signal-to-noise ratio (SNR) definitions across neuroimaging modalities.

Modality MRI PET CT LSFM

SNR= mean(Signal in ROI)
std(Noise)

(33) mean(Lesion)−mean(Background)
std(Background)

(34) mean(Signal)
std(Noise)

(35) µ
σ
(36)

Note. ROI = region of interest; µ and σ represent the mean and standard deviation of voxel intensities

in LSFM images, respectively.

2.1. Limited Resolution and SNR of in vivo Neuroimaging

Non-invasive neuroimaging modalities, including MRI, positron emission tomography (PET), and computed

tomography (CT), present inherent constraints in spatial resolution and signal-to-noise ratio (SNR) that

can limit their ability to comprehensively characterize neurological disease (37, 38). The quantitative

definitions of SNR for representative neuroimaging and microscopy modalities are summarized in Table 1,

where non-invasive methods average signals among regions of interest. These techniques generally achieve

resolutions ranging from millimeters to centimeters (39), which are coarser than the sizes of individual

neurons (10∼100µm soma) or synapses (1∼2µm), resulting in that MRI/PET/CT cannot directly resolve

2Conducted on November 7, 2025, using the searching string ‘(TCGA[Title/Abstract]) AND
(brain[Title/Abstract])’ on page https://pubmed.ncbi.nlm.nih.gov/
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cellular or synaptic detail. For example, diffusion tensor imaging (DTI) might not show subtle preclinical

neuronal loss (40).

Machine learning approaches applied to non-invasive neuroimaging data must contend with fundamental

physical constraints such as limited resolution and low signal-to-noise ratio (SNR), necessitating standard-

ized preprocessing and feature extraction pipelines to extract biologically meaningful signals from noisy

measurements (12, 41). These preprocessing steps, including denoising, head-motion correction, tissue seg-

mentation, and regional averaging (Fig. 1b), are widely adopted in studies and form the foundation for

downstream machine learning analyzes. They typically produce standardized data representations, i.e.,

volumetric, surface, or connectivity forms (Fig. 1a), upon which specialized models such as convolutional

neural networks (CNNs) and graph neural networks (GNNs) are built (Fig. 1c–d). These representations

enable quantitative characterization of regional tissue properties while maintaining anatomical correspon-

dence with a predefined atlas (42).

Building on these standardized data representations, recent advances have leveraged AI-driven multi-

modal frameworks to partially overcome the limitations imposed by resolution and SNR. By integrating

complementary information from multiple non-invasive modalities, multimodal frameworks enhance sen-

sitivity to early disease-related changes that are imperceptible in single-modality analyzes (43). Notable

applications include the early detection of neurodegenerative disorders, where multimodal methods achieve

diagnostic accuracy exceeding 90% for Alzheimer’s disease by combining MRI and PET (44), and improved

modeling of structure-function relationships in the human brain (16, 17). On the other hand, graph neural

networks (GNNs) have emerged as powerful tools to mitigate the analytical impact of limited resolution

and SNR by modeling geometry and connectivity patterns rather than individual voxels from neuroimaging

(45, 46). As illustrated in Fig. 1d, GNNs propagate information through the structural or functional geom-

etry of the brain to capture complex topological dependencies within brain networks. Thereby, it enhances

robustness to voxel-wise noise (47) and enables the detection of subtle connectivity disruptions that may

be undetectable using conventional statistical or non-learnable methods (48). Recent attention-based GNN

variants further improve diagnostic precision in psychiatric disorders such as depression and schizophrenia

(49, 50).

However, the underlying resolution limitations of non-invasive neuroimaging modalities may continue

to constrain the capacity of even the most advanced AI architectures to provide cellular-level insights that

could be essential for understanding the mechanisms of neurological disease mechanisms (51). Although

computational approaches can extract maximum information from available data, the fundamental physical

constraints of these in vivo techniques establish an upper bound on the biological detail accessible through

image analysis.

2.2. Whole-Brain LSFM: Gold Standard Data

Light-sheet fluorescence microscopy (LSFM) represents a shift in neuroscience imaging, providing unprece-

dented access to the cellular architecture with subcellular resolution (Fig. 1e) across entire organ systems,

e.g., the brains of zebrafish (52) and mouse (53). This advanced optical technique, cooperating with tissue

clearing, generates teravoxel-scale datasets (>1012 voxels per brain volume) that capture neuronal morphol-

ogy, connectivity patterns, and vascular distributions with spatial resolutions approaching sub-micrometer,

superior to non-invasive neuroimaging approaches (54, 55). Fig. 1e shows an example of a whole-brain

imaging of a mouse adapted from the paper (32). Tiling of the entire brain is necessary when the specimen

is large, as indicated by multiple stacks in Fig. 1e, leading to a stitching step for neighboring tiles as yellow

arrows to reconstruct the complete 3D specimen.

The fundamental advantage of LSFM lies in its ability to illuminate thin optical sections (1∼5 µm

thickness) through the sample using light sheets, thus minimizing phototoxicity and photobleaching while

www.annualreviews.org • Teravoxel Microscopy Image Analysis for Neurological Diseases 5



maintaining high-speed acquisition capabilities (1∼10 Hz volume rates) (56, 53, 57), compared to days for

confocal microscopy (58). This approach enables comprehensive 3D reconstruction of entire brain volumes

(up to 1 cm3), preserving spatial relationships between diverse cell populations and their associated patho-

logical features (59). For neurological disease research, LSFM datasets provide direct access to pathological

protein aggregates (e.g., amyloid plaques and neurofibrillary tangles (60)), synaptic alterations (61), cellular

degeneration (30), and vascular morphology patterns (25) that remain invisible to conventional imaging

modalities (62, 63).

The high resolution, e.g., 450nm laterally and 2um axially (52), and high SNR, e.g., 1000:1 (53),

characteristics of the LSFM data establish these datasets as gold standard references for understanding the

progression of neurological disease (64, 65). Unlike in vivo analysis that relies on indirect measurements of

brain function or structure through hemodynamic responses or tissue contrast, LSFM provides direct access

to cellular and molecular-level pathology (58). This capability proves particularly valuable for investigating

neurodegenerative diseases, where understanding the spatial distribution and temporal evolution of protein

misfolding, neuroinflammation, and synaptic loss is crucial for the development of targeted therapeutic

strategies (66, 67).

2.3. AI-based Analysis Profiles Whole-Brain Morphology

The analysis of these enormous LSFM volumetric images has been revolutionized by deep learning. Modern

pipelines use CNNs and related architectures to automatically segment and quantify cellular, subcellular,

or vascular structures throughout the brain (68, 69). For example, 3D U-Net (70) has been applied to zebra

fish neuron (68) and mouse vasculature data (25) based on LSFM images.

Deep learning (DL) approaches excel at identifying subtle morphological alterations in neuronal popula-

tions that can indicate early pathological changes in neurological diseases (71). Early studies like BigNeuron

(72) and DeepNeuron (73) can automatically segment neurons, dendrites, and axonal projections across

entire brain regions with a precision matching human expert annotations (Dice coefficients >0.9), enabling

statistical analysis of cellular morphometric parameters including soma volume, dendritic branching com-

plexity (Sholl analysis), spine density, and axonal integrity. Although these early results are patch-based,

such quantitative phenotyping capabilities are essential to understand how neurological diseases affect spe-

cific cellular populations and neural circuits (74).

The computational efficiency and patch result stitching of this teravoxel image analysis task are a pivotal

factor in the feasibility of whole-brain profiling. Although human equivalent performance is observed in

recognizing cropped image patches, reconstructing the cropped results as a whole brain is a necessary step.

Studies transfer the problems as voxel-wise prediction and grouping so that the computation time ranges

from hours to days per brain, and the patch-based results can be concatenated as the whole brain directly

(30, 75). As a result, cell count and vessel size can be quantified in the brain (30, 25).

Aside from the automatic algorithms, manual annotations are the basis for data-driven AI. The inter-

active frameworks, such as ilastik (76) and segmentor (77), provide multiple annotation modes to facilitate

a wide range of applications, from voxel-wise annotation to 3D object tracking. Advanced self-supervised

and contrastive learning methods are also being incorporated to reduce annotation needs in LSFM. Tech-

niques like a simple framework for contrastive learning (78) or masked autoencoders (79) allow networks to

pre-train on unlabeled brain images and then fine-tune on limited hand-annotated samples. This reduces

the manual labeling burden (50-80%) while maintaining accuracy (69). Advanced annotation tasks such as

manual stitching are challenging in LSFM because of imaging uncertainties arising from environmental and

experimental factors (80). For example, movement and vibration of the imaging device, refractive-index

heterogeneity, uneven illumination of the light sheet, and variability in tissue clearing can reduce registra-

tion accuracy and complicate manual alignment. Software for stitching purposes, e.g., TeraStitcher (81)

6 Z. Wei et al.



and Imaris (82), is rare but has been developed to fulfill the needs of interactively visualizing the teravoxel

image with the function of shifting 3D tile images for manual stitching.

3. THE EVOLUTION OF TERAVOXEL IMAGE ANALYSIS

The integration of deep learning methodologies with teravoxel LSFM datasets has refreshed our capacity

to extract quantitative insights from complex neurobiological structures across multiple resolution scales

(54, 83). Whole-brain computational frameworks enable comprehensive profiling of vascular networks,

cellular populations, and subcellular components through automated analysis pipelines that process whole-

brain imaging volumes with precision and throughput (59, 84). The evolution of such huge volumetric data

analysis starts from smaller sizes and fewer data, namely, gigapixel whole-slide images (Fig. 2c), before the

computational hardware is capable of the scale of teravoxel. Although pipelines for 3D teravoxel images

analysis (Fig. 2m) differ from 2D (Fig. 2l), computer vision (CV, which refers broadly to computational

approaches for automated image analysis, encompassing both traditional image-processing techniques and

modern deep learning-based methods) tasks are as same as 2D (Fig. 2fgh) for local patches in 3D (Fig. 2ij).

In this section, the evolution of teravoxel microscopy image analysis for neurological diseases is reviewed

from where it started to the state-of-the-art (SOTA) pipelines.

3.1. Early Neurological Studies for Gigapixel Microscopy Image Analysis

The foundational trajectory of large-scale biological image analysis originated from pioneering developments

in bright field microscopy (BFM) imaging systems, establishing the computational precedent for whole-slide

imaging applications of images larger than megapixel natural images (87, 88). Early work in computational

pathology applied automated analysis to tissue microarrays (TMA), which consist of arrays of megapixel

microscopy images (89). The analysis represents antecedents of modern cell-detection methods applied

to large bright-field microscopy (BFM) images (e.g., 3000 × 3000 pixels), substantially larger than typical

natural-image datasets.

As shown in Fig. 2abcd, although LSFM existed as dark-field microscopy more than 100 years ago,

cell profiling became feasible for BFM gigapixel imaging earlier than LSFM imaging when computers were

equipped with gigabytes of memory. Aperio’s BigTIFF-enabled scanners first supported gigapixel slide

imaging in a practical and production-grade setting in 2007. As semi-supervised learning (90) and unsuper-

vised learning (91) for pathology images have not been presented, computer vision (CV) tasks for pathology

images were focused on local patches with manual annotations instead of the entire gigapixel image. The

methods for image classification (Fig. 2f), object detection (Fig. 2g), and instance segmentation (Fig.

2h) have evolved from handcrafted feature-extraction approaches (92, 93) to modern DL-based methods

(94, 95) for accurate local patch recognition.

As computational efficiency grows in the deep learning era, CNN was adapted to a complete gigapixel

whole slide image (WSI) analysis in 2016 (96) for the GBM prediction of WSIs in the TCGA dataset. This

brings a general pipeline (Fig. 2l) in 2D WSI analysis by acting like pathologists, (i) finding diseased local

patches, then (ii) summarizing reports or labeling based on detected patches (97, 98). Subsequently, tile-

based decomposition strategies divided large gigapixel-scale brain sections into smaller, more manageable

subregions, which maintained spatial continuity by using predefined overlapping boundary regions (99).

Following these CV and gigapixel advances in 2D, deep learning algorithms constituted the core ana-

lytical component. Taupathologies are the main focus of gigapixel image analysis for neurological diseases.

For example, in patch-level recognition, (100) implemented residual network (ResNet) (101) based pyra-

mid scene parsing networks (102) for pTau and pTDP-43 segmentation, where the model demonstrated

intersection over union (IoU) exceeding 60%. Similarly, a fully convolutional network is applied by (103)

www.annualreviews.org • Teravoxel Microscopy Image Analysis for Neurological Diseases 7
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The typical workflows of teravoxel image analysis for neurology. (a) Brain section mounted on the glass, generated
from CCFv3 atlas (85). (b) The specimen of a mouse brain, generated from CCFv3 atlas (85). (c) Gigapixel whole

slide image (WSI), which is assembled from 2D tiles, generated from CCFv3 atlas (85). (d) Teravoxel whole brain

LSFM image, which is assembled from 3D tiles, generated from CCFv3 volume (85). (e) An example of the
preprocessing step, stitching, adapted from (86). 2D Computer Vision (CV) tasks have (f) pixel grouping, (g)

object detection, and (h) instance segmentation. 3D CV tasks have (i) cell counting and (j) instance segmentation,

adapted from (30) and (32), respectively. (k) Cell colocalization from multiple fluorescence channels. (l) 2D WSI
analysis pipeline. (m) 3D teravoxel image analysis pipeline, the whole brain map is adapted from (32).
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for tauopathy detection, achieving a 77-90% true positive ratio. Not long after, (104) utilized the pre-

trained ResNet as a feature extractor to train a multilayer perceptron (MLP) for AD classification from

tau immunostained WSI.

Although studies added more components to improve interpretability in local patch selection (91, 105),

the principle of WSI analysis is still to conclude a result based on smaller regions of interest (RoI) from

the brain section that is sliced off the whole brain. Given that the WSI is already a partial brain, selected

patches or objects are hard to grab systematic whole-brain features for studying neuropathology. In the

opposite, neurological diseases care about biomarkers and morphology across the intact brain to cover all

interesting regions (104, 106). As the qualitative evidence of neuropathology present in an early BFM

imaging study of AD (107), we can observe that neurological biomarkers are distributed across the whole

brain. This urges the analysis of a teravoxel microscopy image of the whole brain.

3.2. Improvements to Microscopy Image Analysis Towards Teravoxel

The evolution from gigapixel whole-slide imaging to teravoxel volumetric analysis necessitates algorithmic

frameworks capable of processing large-scale images that exceed the computational boundaries of gigapixel

images by several orders of magnitude. This emerging field has different imaging workflows using LSFM

rather than BFM, where specimen preparation (Fig. 2b) utilizing tissue clearing protocols and biomarker

fluorescence precedes acquisition of intact tissue volume. Consequently, the computational infrastructure

required to process these volumetric images has evolved from gigabyte memory architectures to terabyte

memory due to vast interesting objects showing up in a 3D form with a clearer contrast between background

and fluorescence excitation, as well as the elevated scale of voxel amount (108, 109).

The transformation from 2D WSI analysis to 3D volume analysis does not mirror the methodological

evolution depicted in BFM imaging workflows, where teravoxel data (Fig. 2d) undergo additional stitching

procedures (Fig. 2e) to generate an intact whole brain in 3D. Furthermore, colocalization is required for

LSFM using multiple fluorescence channels to classify different cellular or molecular objects, e.g., upper-layer

and lower-layer neurons (red and cyan colors in Fig. 2k). However, computational architectures specifically

designed for 3D image analysis in the CV field have rarely been designed for the LSFM modality and the

teravoxel scale.

The 3D CV objectives (Fig. 2ij) are a direct extension of the 2D CV tasks (Fig. 2gh) in most cases.

Segmentation in 3D CV (Fig. 2j), for example, was first proposed by (110) for the confocal fluorescence

microscopy image in 2007. This fully automated method for segmenting 3D cell nuclei is specifically de-

signed to handle closely touching nuclei through gradient flow tracking. This is a direct extension and

enhancement of traditional 2D segmentation. The method demonstrates quantitative performance with

both over-segmentation and under-segmentation percentages around 5%, while achieving volume overlap

exceeding 90% compared to expert manual segmentation, validated across synthesized and real 3D biolog-

ical images, including Caenorhabditis elegans embryos and zebrafish nuclei. Subsequently, deep learning

approaches U-Net (111) and its 3D variants (70, 68) have demonstrated exceptional performance in seg-

menting cellular populations and vascular networks within teravoxel brain volumetric images, achieving

3D IoU scores that exceed 85% for neuronal soma detection and 78% for vascular structure delineation

(111, 95). Advanced attention mechanisms and transformer-based architectures have been integrated into

these frameworks to capture long-range spatial dependencies that are particularly relevant to analyze dis-

tributed pathological patterns across entire brain hemispheres (112, 113). Recently, a work found that 3D

cell segmentation extended directly from 2D is not robust for anisotropic resolution in whole brain LSFM

(32). A novel 2D-to-3D manner is proposed with more robustness and efficiency. However, these 3D CV

methodologies have not been scaled to a teravoxel whole-brain image.

The comprehensive 3D teravoxel analysis pipeline represents a shift from the extraction of RoI in 2D

www.annualreviews.org • Teravoxel Microscopy Image Analysis for Neurological Diseases 9



(Fig. 2l) to whole brain profiling for statistical analysis (Fig. 2m), as intact tissue is imaged by LSFM

rather than a brain section by BFM. Thus, the robustness of preprocessing and the high throughput of

3D CV algorithms are driving factors for trustworthy, efficient whole-brain profiling and consequent new

neuropathological analysis. Although the entire cellular organization of cleared tissues can be rapidly

imaged using LSFM at acquisition rates 2 to 3 orders of magnitude faster than point scanning systems

(54, 55), day-long scanning in mammalian brains with large volume leads to challenging preprocessing of

volumetric image stitching (Fig. 2e). The stitching problem is rooted in the fundamental trade-off between

the limited size of the field of view (FOV) and the high resolution of microscopy. Achieving cellular-level

detail across an entire mouse brain requires acquisition strategies by partitioning the imaging volume into

manageable segments and slices. Consequently, challenging registration between 3D segments is represented

by the various movements (∆X vs. Z in Fig. 2e) across different slices due to the long scanning time.

3.3. 3D Reconstruction: Stitching

The earliest implementations of LSFM stitching relied heavily on manual alignment procedures, reflecting

the limited computational infrastructure and algorithmic sophistication available during the initial develop-

ment of light sheet microscopy systems. These pioneering approaches required extensive user intervention

to specify correspondence points between overlapping image regions, typically employing simple translation

models to achieve basic tile alignment. The computational demands of these early methods were substantial,

often requiring days or weeks of processing time for even modest whole-brain datasets (114).

The TrakEM2 software package represented one of the first comprehensive and semi-automated solutions

for large-scale image stitching (114). This system implemented manual registration capabilities that allowed

researchers to specify correspondence points between adjacent tiles, applying rigid transformation models

(115) to achieve initial alignment. The approach utilized interactive visualization tools to enable precise

manual positioning of image tiles, although the process remained extremely time-intensive for large datasets.

Early automated approaches began to incorporate cross-correlation techniques to identify optimal align-

ment parameters between overlapping image regions (116). These methods computed normalized cross-

correlation coefficients across predefined search windows, identifying translation offsets that maximized

correlation between adjacent tiles. While representing a significant advancement over purely manual ap-

proaches, these early correlation-based methods struggled with illumination variations and geometric dis-

tortions characteristic of LSFM acquisitions (117, 118).

The introduction of phase correlation techniques (119) marked a significant advancement in LSFM

stitching methodologies (120, 81), leveraging frequency domain representations to achieve more robust and

efficient alignment. These approaches exploited the Fourier shift theorem to compute translation param-

eters directly from the phase information of overlapping image regions, providing improved accuracy and

computational efficiency compared to spatial domain methods. Preibisch introduced the globally optimal

stitching framework, implementing phase correlation for pairwise shift estimation coupled with global op-

timization algorithms to minimize accumulated registration errors (120). As a representative of the phase

correlation-based method, this approach indicates another fundamental shift from sequential alignment

procedures to global optimization strategies that consider the entire tile configuration simultaneously. The

method demonstrated significant improvements in registration accuracy, particularly for large tile arrays

where accumulated errors could become substantial. The Scale-Invariant Feature Transform (SIFT) al-

gorithm (121), afterward, was integrated into the stitching pipelines, providing enhanced robustness to

illumination variations and geometric distortions. Such hybrid approaches combined the computational

efficiency of phase correlation with the geometric robustness of feature-based matching, allowing for more

accurate alignment of tiles exhibiting significant photometric differences (115). The incorporation of SIFT

features also facilitated the detection and correction of systematic geometric distortions inherent to LSFM
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optical systems (122).

TeraStitcher (81), based on phase correlation, represents a significant advancement in high-performance

computing solutions for large-scale LSFM stitching. The key innovation is the multi-level parallelization

strategy, which exploits both thread-level and process-level parallelism, enabling efficient distribution of

computational workload across multiple processing cores and nodes (123). This design significantly reduces

processing time for large datasets while maintaining registration accuracy within 1-2 pixels for typical

applications. The system utilized hierarchical data structures and optimized Input/Output (I/O) operations

to achieve efficient processing of massive tile arrays while maintaining sub-pixel registration accuracy and

minimal memory usage (<8GB).

Advanced stitching frameworks began to incorporate elastic registration techniques to account for tissue

deformation and non-rigid distortions that occur during specimen preparation and imaging (124). The

method implemented deformation models that could capture local tissue movements while maintaining

global geometric coherence. This results in substantial computational resources along with significant

improvements in registration accuracy for large and deformable specimens.

The BigStitcher platform represented a major advancement in scalable LSFM stitching, specifically

designed to handle the massive datasets characteristic of whole brain imaging protocols (125). This system

integrated advanced memory management strategies, distributed computing capabilities, and optimized

algorithms to enable the processing of teravoxel-scale images (126). The platform implemented multiple

registration algorithms, including phase correlation, Lucas-Kanade optimization, and interest point-based

approaches, providing users with flexible options for interactive stitching.

The WobblyStitcher algorithm, integrated within the ClearMap2 software suite, introduced novel ap-

proaches for handling non-rigid deformations and geometric distortions commonly encountered in tissue

clearing protocols (127). This method implemented advanced elastic registration techniques combined with

robust outlier detection mechanisms to achieve accurate alignment of tiles exhibiting significant geometric

variations (86). The algorithm demonstrated particular effectiveness in processing specimens that had un-

dergone extensive tissue clearing procedures, where conventional rigid registration approaches often failed

due to tissue deformation and optical distortions (128).

The modern ImarisStitcher system, developed by Bitplane, provided a comprehensive commercial solu-

tion for LSFM stitching with an emphasis on user-friendly interfaces and integrated visualization capabilities

(129). This platform implemented multiple registration algorithms, including phase correlation, feature-

based matching, and hybrid approaches, enabling users to select optimal methods based on the interactive

ImarisViewer (130). The user-friendly graphic user interface (GUI) and the capability of dragging tile

images in all dimensions facilitate user validation and refinement of stitching results.

3.4. Multiple Fluorescences: Colocalization

Modern LSFM systems can acquire volumetric images of entire mouse brains in hours, generating datasets

containing billions of voxels in multiple fluorescence channels (131). The analysis of spatial relationships

between different molecular markers within these teravoxel images requires efficient computing that can han-

dle the unique challenges posed by cleared brain tissue imaging, including non-uniform signal distribution

(132) and tissue deformation artifacts (133).

The foundation of quantitative colocalization analysis was established through the adaptation of Pear-

son’s correlation coefficient (PCC) to confocal fluorescence microscopy prior to LSFM (134). This method

evaluates the linear relationship between pixel intensities across two channels by calculating the correla-

tion coefficient between the corresponding pixels in dual-channel images. The PCC approach was initially

developed for confocal microscopy applications but was subsequently adapted for LSFM as the technology

matured in the early 2000s (135). Despite its widespread adoption, PCC analysis demonstrated significant
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limitations when applied to LSFM data, particularly in the presence of background fluorescence and when

analyzing sparse cellular populations typical of whole-brain imaging. Building upon the PCC foundation,

Mander’s coefficients were developed to quantify the proportion of fluorescence in one channel that over-

laps with fluorescence in a second channel (136). These coefficients address some limitations of PCC by

providing asymmetric measures of colocalization, enabling researchers to determine whether marker A is

contained within regions positive for marker B, and vice versa. The Manders coefficients became partic-

ularly relevant for LSFM applications where cellular markers might show different expression patterns or

labeling efficiencies for the same cell across brain regions (54).

By standing on the shoulders of these foundation works, the evolution of colocalization methods for

LSFM whole-brain imaging has progressed through distinct methodological phases over the past two

decades. Before 2010, the cell colocalization between channels was intensity-based. The Intensity Cor-

relation Analysis (ICA) method addressed the limitations of traditional correlation coefficients in distin-

guishing between dependent and independent fluorescence distributions (137). The ICA approach calculates

the product of the differences from the mean (PDM) for each pixel pair, providing a more sensitive mea-

sure of pixel-wise correlation than traditional PCC methods. This technique proved particularly valuable

for LSFM applications where weak colocalization signals might be masked by background fluorescence or

where spatial heterogeneity in marker expression complicates analysis (138). The ICA method’s ability to

detect subtle correlations made it especially useful as an ImageJ plugin (139) for whole-brain LSFM. The

automated thresholding approach objectively determines appropriate intensity thresholds for colocalization

analysis without user bias (140). The method iteratively calculates PCC values for different threshold com-

binations and selects thresholds that maximize the correlation while maintaining statistical significance.

This approach addressed a critical limitation in LSFM colocalization analysis, where manual threshold

selection could introduce systematic bias across different brain regions or experimental conditions. The

automated thresholding method became essential for processing large-scale LSFM datasets where manual

threshold optimization for hundreds of brain regions would be impractical.

The 2010s witnessed the emergence of recognition-related methodologies, where traditional pixel-based

methods could produce mistakes for objects of interest. They led to the development of object-based

colocalization analysis approaches (141). These methods first segment individual cellular structures or

molecular compounds for every channel, then the colocalization is produced between segmentation masks

rather than pixel-wise intensities. This approach proved particularly valuable for LSFM applications in

which cellular boundaries and subcellular structures can be clearly resolved (142). It reduces false positive

cell colocalization that can arise from background fluorescence, since only objects of interest are segmented,

and provides more neuroanatomy-related measures of spatial association between cellular objects. Build-

ing on object-based segmentation, distance-based colocalization methods quantify the spatial separation

between identified objects to determine whether they are truly colocalized or merely adjacent (143). These

approaches calculate minimum distances between object boundaries and apply statistical tests to deter-

mine whether observed distances are significantly different from random distributions. The distance-based

analysis became crucial for LSFM applications where the high resolution might cause distinct but adjacent

structures within the same cell to appear colocalized (144). The method’s ability to account for the 3D

nature of LSFM data made it particularly well-suited for whole-brain analysis where cellular structures

extend across multiple Z-planes.

Afterward, the development of standardized brain atlases, particularly the Allen Common Coordinate

Framework version 3 (CCFv3), enabled systematic registration of LSFM datasets in common reference

spaces (85). A branch of studies (145, 146) reformulated the colocalization as a registration problem

of aligning multichannel LSFM images to a common space of the annotated brain atlas. The method

addresses challenges specific to LSFM imaging, including tissue deformation artifacts introduced by clearing
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procedures and non-uniform signal distribution across multiple channels (147). Atlas registration not only

advanced cell colocalization, but it also became essential for comparative studies and meta-analyzes of

whole-brain LSFM datasets, providing standardized coordinate systems for quantifying spatial relationships

between molecular markers, since it has been involved in the teravoxel analysis pipeline (Fig. 2m).

Deep learning-based colocalizations, such as (148, 149), provide supervised learning solutions for the

common problem of diverse SNR among different channels of LSFM based on a convolutional long short-term

memory (LSTM) neural network. The adaptive nature of these algorithms enables more robust analysis

across different tissue-clearing methods, imaging conditions, and marker combinations, leading to teravoxel

analysis of multiple cell types.

4. EMERGING APPLICATIONS OF TERAVOXEL MICROSCOPY IMAGE ANALYSIS FOR
NEUROLOGY

The most recent applications of teravoxel microscopy image analysis for neurological diseases focus on the

whole mouse brain vascular and neuronal system. Various SOTA teravoxel analysis pipelines in related

studies were framed similarly as in Fig. 2m after the teravoxel image reconstruction. Different concerns

have been explored on the feasibility of AI methodologies (150), the special properties of LSFM (such as

anisotropic resolution (31)), and the efficiency of teravoxel computation (30). Considering this, the differ-

ences between applications can be summarized as predictive methodologies, objects of interest, and result

reconstructions. Every application is a computing stream of small local patches fed into a local operator,

which is illustrated in the workflow: (i) Reconstructing teravoxel input (Fig. 3a), (ii) two computation

categories for every local patch (Fig. 3cd), and (iii) the whole-brain statistics for the neurological outcome

based on whole-brain profiles at the cellular level (Fig. 3efgh).

3D Neural Network (NN) pipeline (Fig. 3c) and 2D NN pipeline (Fig. 3d) have demonstrated shared

objectives and diverse computational efficiency (Fig. 3b). The 3D NN pipeline incorporates advanced

methodologies spanning from watershed-based segmentation techniques (151) through 3D CNN (152) to

the 3D Vision Transformer (ViT) architectures (153), demonstrating whole-brain profiling by vessel seg-

mentation (25), and voxel-wise (69, 150) and patch-wise (154) nuclei classification tasks. In contrast, the

2D pipeline leverages U-Net architectures (111) and a hybrid 2D CNN + GNN framework (32) for efficient

nuclei detection and colocalization (30), and instance segmentation (32) across volumetric datasets. These

state-of-the-art teravoxel microscopy image analysis applications are reviewed in this section regarding their

pros and cons using a 3D or 2D pipeline.

4.1. 3D NN based Pipeline

The development of 3D NN architectures has fundamentally extended patch-based 3D CV methodologies to

teravoxel image analysis, enabling direct tera-level voxel-wise prediction of cellular and vascular structure

(Fig. 3eg). Early watershed-based segmentation approaches provided automated quantitative analysis of

dense objects, establishing an earlier framework that detects nuclei in the whole mouse brain (150). Multiple

Cre mice were used for cell segmenting and counting in each region, as well as fiber tract segmentation, to

map the rabies-EGFP process in the whole mouse brain.

The 3D U-net was also scaled up to teravoxel, indicating a significant advancement in computational

efficiency and analytical precision. (25) developed a machine learning framework specifically designed for

whole mouse brain vasculature mapping (vessel map in Fig. 3e), demonstrating how 3D CNN architectures

could effectively capture complex vessel morphologies and network topologies across teravoxel datasets. The

reported evidence of secondary intracranial collateral vascularization in CD1 mice (longer vessel length in

Fig. 3e) and reduced vascularization of the brainstem in comparison to the cerebrum revealed unbiased and

www.annualreviews.org • Teravoxel Microscopy Image Analysis for Neurological Diseases 13



GU AD

Ve
ss

el
 le

ng
th

CD1 C57BL/6J BALB/c

Ctip2

Cux1

TP3

Reconstructed Teravoxel Image

(a)

chXch1 …

3D NN

chXch1

(d)

…

(c) 2D NN

• Watershed (2018)
• 3D CNN (2020, 2021)
• 3D ViT (2025)

• Unet (2021)
• CNN + GNN (2023)

(b)

10410010-2 102
runtime (s)

Megavoxel

Gigavoxel

Teravoxel

3D
2D

• Nuclei instance segm-
entation

• Segmentation recons-
truction

PA1 PA2

PA3

TBA
?

• Vessel segmentation
• Centerline segmentation
• Bifurcation detection
• Radius regression

• Nuclei detection
• Nuclei colocalization

• Nuclei voxel grouping
• Uncertainty map
• Cell/non-cell classific-

ation

To
ta

l c
el

l c
ou

nt

Morphological profiles

N
uc

le
i d

en
si

ty

30 4
oC

(e) (f)

(g) (h)

Figure 3

Existing applications of teravoxel image analysis can be categorized into two types, 3D and 2D approaches, after
(a) the whole-brain image is reconstructed (tile stitching and channel alignment between ch1 to chX). They are

differentiated by 3D and 2D operators, respectively, resulting in (b) runtimes of 2D approaches are consistently
faster than 3D, with lower than 104 seconds for teravoxel whole-brain images. (c) 3D operators in existing

applications include watershed (150), 3D CNN (25, 154), and 3D ViT (69) for (e) vessel segmentation (25) and (g)
nuclei voxel grouping (69) from volumetric inputs, where vessel and nuclei plots are adapted from corresponding

literature, respectively. On the other hand, (d) 2D operators include Unet, CNN, and GNN, (f) predict nuclei
locations (30) and (h) reconstruct instance segmentation (32) in 3D from 2D patches, respectively, where cell count
and morphology plots are adapted from corresponding literature. Although whole-brain studies differ from
computational approaches, the whole-brain profiles of 3D cellular biomarkers brought novel associations between

(e) vessel length and brain region (GU: Gustatory areas; AD: Anterodorsal nucleus), (f) counting across different
cell types (TP3: TO-PRO-3), (g) nuclei density and temperature of exposure, and (h) a to-be-announced (TBA)

whole-brain profile of nuclei Principal Axis (PA).
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scalable quantifications of the angioarchitecture of the mouse brain. This work established critical prece-

dents for automated vascular phenotyping and enabled systematic quantification of vascular parameters

that were previously inaccessible through conventional analysis methods.

Subsequent developments in deep learning methodologies further enhanced the precision of cellular

detection and segmentation capabilities. (154) introduced specialized algorithms for 3D cell detection in

whole mouse brain datasets, achieving >95% accuracy in local patch classification, whether there is a cell,

across various brain regions. Unlike voxel-wise prediction in previous works, patch-based (50×50×20µm3)

classification leads to high efficiency (91 mins/brain) with coarse cell detection. Their efficient pipeline

demonstrated that the algorithm cell counts are correlated with manual cell counts (>0.99) for large-scale

cellular phenotyping.

The utilization of 3D ViT architectures in 2025 represents the latest evolution in this teravoxel analysis

trajectory, offering an artificial intelligence-based cartography of ensembles (ACE) pipeline by enhanced

attention mechanisms (69). It enabled unbiased mapping of local neuronal activity and connectivity. It

demonstrated superior segmentation accuracy, advanced by uncertainty mapping and Monte Carlo dropout.

The statistical analysis between mice acclimated in different temperatures quantitatively measured c-Fos

immunolabeled cells (nuclei density in Fig. 3g) under different environmental stimuli.

4.2. 2D NN based Pipeline

The 2D CNN is more efficient than the 3D CNN as exemplified in Fig. 3b since it uses 2D filters. The

computation of data with a teravoxel scale can be done in hours by 2D methods, while 3D methods can take

days. Therefore, several recent studies have a 2D-to-3D methodology in their pipeline to increase efficiency

(30) and to address anisotropic resolution as well (32).

The differences in the 2D pipeline (Fig. 3d) are (i) computing 2D slices with higher resolution, and (ii)

reconstructing 2D results to 3D along the low-resolution axis. NuMorph (30) was proposed to predict nuclei

as dots (nuclei cloud in Fig. 3f) for cell counting across multiple fluorescence channels. Based on a threshold-

based colocalization algorithm, total cell counts and spatial correlation among different stained cell types are

statistically compared between wild-type mice and gene-modified mice, demonstrating quantitative results

of neuron overgrowth since the cell counts in the isocortex region of gene-modified mice are increasing.

The anisotropic resolution was reported as a defect for 3D volumetric segmentation (32), causing in-

accurate (<80%) instance segmentation by 3D CNN. 2D CNN was used in this work, incorporated with a

GNN-based 2D-to-3D approach to group the 2D segmentation masks as a complete 3D prediction. This at-

tempt first presents whole-brain instance segmentation, enabling cellular morphology mapping in teravoxel

image analysis (nuclei volume map in Fig. 3h).

4.3. Future Directions

4.3.1. Cell Morphology Whole-Brain Profiling The development of morphological characterization of cells

and neurons represents a fundamental advancement in quantitative neuroanatomy. Current analytical

pipelines primarily focus on basic geometric parameters such as location, density, and size measurements

of cells and vessels, yet the complex 3D morphology of nuclear and neuron populations demands more

approaches. As 3D robust nuclei instance segmentation demonstrated in whole brain LSFM (32), future

computational frameworks could integrate advanced shape descriptors, including spherical harmonic de-

composition (155), and principal axis measures (morphological profiles in Fig. 3h) to capture nuanced

morphological variations that characterize different cellular phenotypes and pathological states.
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4.3.2. Error-Resistant Teravoxel Image Analysis Pipeline Although statistical results as new biomarkers,

e.g., vascular measurements (25), provided new neurological insights for brain disorder early diagnosis,

complex preprocessing steps (Fig. 2ek) can cause errors accumulated in statistical results. Since 3D and

2D-based pipelines consume most of the time for computation after teravoxel image preprocessing (104

seconds in Fig. 3b), the redo of data analysis will double the time cost to correct preprocessing errors,

where small errors in teravoxel-scale data are hard to find yet fatal for the conclusion. An error-resistant

pipeline can be formed by (i) analyzing raw data before the reconstruction of teravoxel volumetric image,

and (ii) calculating the transformation parameters of raw data, which can be applied later on to analytical

results as needed.

4.3.3. Cellular Pathology and Morphology Coupling An investigation (156) represented an innovative mul-

timodal platform integrating LSFM with 18F-flutemetamol PET and MRI to establish quantitative 3D

correlations between β-amyloid pathology in ocular and cerebral tissues. Although the proposed method

reconstructed Aβ, microglia, and astrocytes from LSFM to a 3D surface instead of a teravoxel image,

this study demonstrated a significant difference (p <0.001) between the amyloid plaque surface volume of

AD and control groups. The PET standardized uptake value ratios (SUVRs) with weaker statistics, non-

significant between AD and control (p =0.167), established the first quantitative evidence of multimodal

analysis of pathological and morphological features in cellular resolution across the whole brain surface.

This potential proved that emerging longitudinal multimodal studies for coupling cellular pathology and

morphology can further advance our understanding of neurological diseases with the gold standard datasets.

These improvements will allow us to better understand neurological disease processes. They will link

cellular pathology with systems-level phenotypes, which have long hindered our understanding of complex

neurobiological disorders.

5. CONCLUSIONS

The emergence of light sheet fluorescence microscopy (LSFM) coupled with artificial intelligence-driven

analysis represents a paradigm-shifting transformation in neurological disease research, fundamentally sur-

passing the resolution and specificity limitations inherent to non-invasive neuroimaging modalities. This

convergence has enabled unprecedented access to cellular-level structural details in intact brain tissue, gen-

erating a teravoxel image that captures neuronal morphology, vascular networks, and pathological protein

distributions with subcellular precision. The evolution from gigapixel whole-slide imaging to comprehen-

sive 3D volumetric analysis has necessitated efficient and robust computational frameworks capable of

preprocessing, detecting, and segmenting objects of interest, where the data scale exceeds non-invasive

neuroimaging by several orders of magnitude.

Teravoxel analysis pipelines have demonstrated both 3D and 2D neural network-based methodologies,

each offering distinct computational trade-offs between precision and efficiency. The implementation of

advanced deep learning methodologies, ranging from 3D U-Net, ViT architectures for vascular mapping,

to hybrid 2D CNN-GNN frameworks for nuclei instance segmentation, has enabled systematic character-

ization of cellular populations and morphological alterations previously inaccessible through non-invasive

neuroimaging. These computational advances have yielded quantitative insights into neuroinflammatory re-

sponses, neurodegenerative processes, and vascular pathology. Simultaneously, unique challenges of LSFM,

including non-rigid stitching and multichannel fluorescence, are considered. Methodological standards are

established for investigating neurological disease mechanisms at the cellular scale across the whole brain,

quantitatively.
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